import matplotlib.pyplot as plt import pandas as pd go = 'y' parameters = 'slope,intercept,beta0,beta1,Cphi'.split(',') while go == 'y': go = input('continue? ') if go != 'y': break plt.close('all') df = pd.read_csv('outputs/iterative_fitter_output_df.csv') info_cols = {parameter: [] for parameter in parameters} for col in df.columns: for parameter in parameters: if parameter in col: info_cols[parameter].append(col) for parameter in parameters: mini_df = df[info_cols[parameter]] fig, ax = plt.subplots() ax.set_title(parameter) for col in info_cols[parameter]: ax.plot(df['iters'].values, df[col].values, label=col, linestyle='-', marker='o') ax.set_xlabel('iteration') ax.set_ylabel('Value') plt.legend() plt.show() fig, ax = plt.subplots() ax.set_title('best_obj_value') ax.plot(df['iters'].values, df['best_obj'].values, linestyle='-', marker='o') ax.set_xlabel('iteration') ax.set_ylabel('Value') plt.show()