Source code for reeps.reeps

from datetime import datetime
import cantera as ct
import pandas as pd
import numpy as np
from scipy.optimize import minimize
# noinspection PyPep8Naming
import xml.etree.ElementTree as ET
import seaborn as sns
import matplotlib.pyplot as plt
import shutil
import copy
from inspect import signature
import os
import re
import pkg_resources

sns.set()
sns.set(font_scale=1.6)


[docs]class REEPS: r""" Rare earth elements (REE or RE) Takes in experimental data Returns parameters for GEM .. note:: The order in which the REEs appear in the csv file must be the same order as they appear in the xml, complex_names and rare_earth_ion_names. For example, say in exp_csv_filename's csv, RE_1 is Nd RE_2 is Pr, and .. code-block:: python aq_solvent_name = 'H2O(L)' extractant_name = '(HA)2(org)' diluent_name = 'dodecane' Then: The csvs column ordering must be: [h_i, h_eq, z_i, z_eq, Nd_aq_i, Nd_aq_eq, Nd_d_eq, Pr_aq_i, Pr_aq_eq, Pr_d_eq] The aqueous speciesArray must be "H2O(L) H+ OH- Cl- Nd+++ Pr+++" The organic speciesArray must be "(HA)2(org) dodecane Nd(H(A)2)3(org) Pr(H(A)2)3(org)" .. code-block:: python complex_names = ['Nd(H(A)2)3(org)', 'Pr(H(A)2)3(org)'] rare_earth_ion_names = ['Nd+++', 'Pr+++'] :param exp_csv_filename: (str) csv file name with experimental data In the .csv file, the rows are different experiments and columns are the measured quantities. The ordering of the columns needs to be: [h_i, h_eq, z_i, z_eq, {RE_1}_aq_i, {RE_1}_aq_eq, {RE_1}_d_eq, {RE_2}_aq_i, {RE_2}_aq_eq, {RE_2}_d_eq,... {RE_N}_aq_i, {RE_N}_aq_eq, {RE_N}_d_eq] Naming does not matter, just the order. Where {RE_1}-{RE_N} are the rare earth element names of interest i.e. Nd, Pr, La, etc. Below is an explanation of the columns. +-------+------------+------------------------------------------+ | Index | Column | Meaning | +=======+============+==========================================+ | 0 | h_i | Initial Concentration of | | | | H+ ions (mol/L) | +-------+------------+------------------------------------------+ | 1 | h_eq | Equilibrium concentration of | | | | H+ ions (mol/L) | +-------+------------+------------------------------------------+ | 2 | z_i | Initial concentration of | | | | extractant (mol/L) | +-------+------------+------------------------------------------+ | 3 | z_eq | Equilibrium concentration of | | | | extractant (mol/L) | +-------+------------+------------------------------------------+ | 4 | {RE}_aq_i | Initial concentration of RE ions (mol/L) | +-------+------------+------------------------------------------+ | 5 | {RE}_aq_eq | Equilibrium concentration of RE ions | | | | in aqueous phase (mol/L) | +-------+------------+------------------------------------------+ | 6 | {RE}_d_eq | Equilibrium Ratio between amount of | | | | RE atoms in organic to aqueous | +-------+------------+------------------------------------------+ :param phases_xml_filename: (str) xml file with parameters for equilibrium calc Would recommend copying and modifying xmls located in data/xmls or in Cantera's "data" folder speciesArray fields need specific ordering. In aqueous phase: aq_solvent_name, H+, OH-, Cl-, RE_1, RE_2, ..., RE_N For aqueous phase, RE_1-RE_N represent RE ion names i.e. Nd+++, Pr+++ In organic phase : extractant_name, diluant_name, RE_1, RE_2, ..., RE_N For organic phase, RE_1-RE_N represent RE complex names i.e. Nd(H(A)2)3(org), Pr(H(A)2)3(org) :param phase_names: (list) names of phases in xml file Found in the xml file under <phase ... id={phase_name}> :param aq_solvent_name: (str) name of aqueous solvent in xml file :param extractant_name: (str) name of extractant in xml file :param diluant_name: (str) name of diluant in xml file :param complex_names: (list) names of complexes in xml file. Ensure the ordering is correct :param rare_earth_ion_names: (list) names of rare earth ions in xml file Ensure the ordering is correct :param re_species_list: (list) names of rare earth elements. If ``None``, re_species_list will be rare_earth_ion_names without '+' i.e. 'Nd+++'->'Nd' Ensure the ordering is correct :param aq_solvent_rho: (float) density of solvent (g/L) If ``None``, molar volume/molecular weight is used from xml :param extractant_rho: (float) density of extractant (g/L) If ``None``, molar volume/molecular weight is used from xml :param diluant_rho: (float) density of diluant (g/L) If ``None``, molar volume/molecular weight is used from xml :param opt_dict: (dict) dictionary containing info about which species parameters are updated to fit model to experimental data Should have the format as below .. code-block:: python opt_dict = {"species1": {"parameter1": "guess1", "parameter2": "guess2", ... "parameterN": "guessN"} "species2": {"parameter1": "guess1", "parameter2": "guess2", ... "parameterN": "guessN"} ... "speciesN": {"parameter1": "guess1", "parameter2": "guess2", ... "parameterN": "guessN"} } :param objective_function: (function or str) function to compute objective By default, the objective function is log mean squared error of distribution ratio .. code-block:: python np.sum((np.log10(d_pred)-np.log10(d_meas))^2) Function needs to take inputs: .. code-block:: python objective_function(predicted_dict, measured_df, kwargs) ``kwargs`` is optional Function needs to return: (float) value computed by objective function Below is the guide for referencing predicted values +---------------------------+--------------------------------+ | To access | Use | +===========================+================================+ | hydrogen ion conc in aq | predicted_dict['h_eq'] | +---------------------------+--------------------------------+ | extractant conc in org | predicted_dict['z_eq'] | +---------------------------+--------------------------------+ | RE ion eq conc in aq | predicted_dict['{RE}_aq_eq'] | +---------------------------+--------------------------------+ | RE complex eq conc in org | predicted_dict['{RE}_org_eq'] | +---------------------------+--------------------------------+ | RE distribution ratio | predicted_dict['{RE}_d_eq'] | +---------------------------+--------------------------------+ Replace "{RE}" with rare earth element i.e. Nd, La, etc. For measured values, use the same names, but replace ``predicted_dict`` with ``measured_df`` :param optimizer: (function or str) function to perform optimization .. note:: The optimized variables are not directly the species parameters, but instead are first multiplied by the initial guess before sending becoming the species parameters. For example, say .. code-block:: python opt_dict = {'Nd(H(A)2)3(org):'h0':-4.7e6} If the bounds on h0 need to be [-4.7e7,-4.7e5], then divide the bounds by the guess and get .. code-block:: python "bounds": [(1e-1, 1e1)] Though fit() returns a structure identical to opt_dict with correct scaled values, in case bounds and constraints are used, you must note the optimized x's are first multiplied by the initial guess before written to the xml. By default, the optimizer is scipy's optimize function with .. code-block:: python default_kwargs= {"method": 'SLSQP', "bounds": [(1e-1, 1e1)] * len(x_guess), "constraints": (), "options": {'disp': True, 'maxiter': 1000, 'ftol': 1e-6}} Function needs to take inputs: ``optimizer(objective_function, x_guess, kwargs)`` ``kwargs`` is optional Function needs to return: (np.ndarray) Optimized parameters :param temp_xml_file_path: (str) path to temporary xml file. This xml file is a duplicate of the phases_xml_file name and is modified during the optimization process to avoid changing the original xml file default is local temp folder """ def __init__(self, exp_csv_filename, phases_xml_filename, phase_names, aq_solvent_name, extractant_name, diluant_name, complex_names, rare_earth_ion_names, re_species_list=None, aq_solvent_rho=None, extractant_rho=None, diluant_rho=None, opt_dict=None, objective_function='Log-MSE', optimizer='SLSQP', temp_xml_file_path=None ): self._built_in_obj_list = ['Log-MSE'] self._built_in_opt_list = ['SLSQP'] self._exp_csv_filename = exp_csv_filename self._phases_xml_filename = phases_xml_filename self._opt_dict = opt_dict self._phase_names = phase_names self._aq_solvent_name = aq_solvent_name self._extractant_name = extractant_name self._diluant_name = diluant_name self._complex_names = complex_names self._rare_earth_ion_names = rare_earth_ion_names self._aq_solvent_rho = aq_solvent_rho self._extractant_rho = extractant_rho self._diluant_rho = diluant_rho self._objective_function = None self.set_objective_function(objective_function) self._optimizer = None self._re_species_list = re_species_list self.set_optimizer(optimizer) if temp_xml_file_path is None: temp_xml_file_path = r'{0}/temp.xml'.format(os.getenv('TEMP')) self._temp_xml_file_path = temp_xml_file_path # Try and except for adding package data to path. # This only works for sdist, not bdist # If bdist is needed, research "manifest.in" python setup files try: shutil.copyfile(self._phases_xml_filename, self._temp_xml_file_path) self._phases = ct.import_phases(self._phases_xml_filename, phase_names) except FileNotFoundError: self._phases_xml_filename = \ pkg_resources.resource_filename('reeps', r'..\data\xmls\{0}'.format( phases_xml_filename)) shutil.copyfile(self._phases_xml_filename, self._temp_xml_file_path) self._phases = ct.import_phases(self._phases_xml_filename, phase_names) try: self._exp_df = pd.read_csv(self._exp_csv_filename) except FileNotFoundError: self._exp_csv_filename = pkg_resources.resource_filename( 'reeps', r'..\data\csvs\{0}'.format(self._exp_csv_filename)) self._exp_df = pd.read_csv(self._exp_csv_filename) self._exp_df_columns = ['h_i', 'h_eq', 'z_i', 'z_eq'] if self._re_species_list is None: self._re_species_list = [] for name in self._rare_earth_ion_names: species = name.replace('+', '') self._re_species_list.append(species) for species in self._re_species_list: self._exp_df_columns.append('{0}_aq_i'.format(species)) self._exp_df_columns.append('{0}_aq_eq'.format(species)) self._exp_df_columns.append('{0}_d_eq'.format(species)) self._exp_df.columns = self._exp_df_columns self._in_moles = None self._aq_ind = None self._org_ind = None self._re_charges = None self.set_in_moles(feed_vol=1) self._predicted_dict = None self.update_predicted_dict()
[docs] @staticmethod def slsqp_optimizer(objective, x_guess): """ The default optimizer for REEPS Uses scipy.minimize with options .. code-block:: python default_kwargs= {"method": 'SLSQP', "bounds": [(1e-1, 1e1)*len(x_guess)], "constraints": (), "options": {'disp': True, 'maxiter': 1000, 'ftol': 1e-6}} :param objective: (func) the objective function :param x_guess: (np.ndarray) the initial guess (always 1) :returns: (np.ndarray) Optimized parameters """ optimizer_kwargs = {"method": 'SLSQP', "bounds": [(1e-1, 1e1)] * len(x_guess), "constraints": (), "options": {'disp': True, 'maxiter': 1000, 'ftol': 1e-6}} res = minimize(objective, x_guess, **optimizer_kwargs) est_parameters = res.x return est_parameters
[docs] def log_mean_squared_error(self, predicted_dict, meas_df): """Default objective function for REEPS Returns the log mean squared error of predicted distribution ratios (d=n_org/n_aq) to measured d. np.sum((np.log10(d_pred)-np.log10(d_meas))\**2) :param predicted_dict: (dict) contains predicted data :param meas_df: (pd.DataFrame) contains experimental data :return: (float) log mean squared error between predicted and measured """ meas = np.concatenate([meas_df['{0}_d_eq'.format(species)].values for species in self._re_species_list]) pred = np.concatenate([ predicted_dict['{0}_d_eq'.format(species)] for species in self._re_species_list]) log_pred = np.log10(pred) log_meas = np.log10(meas) obj = np.sum((log_pred - log_meas) ** 2) return obj
[docs] def get_exp_df(self) -> pd.DataFrame: """Returns the experimental DataFrame :return: (pd.DataFrame) Experimental data """ return self._exp_df
[docs] def set_exp_df(self, exp_csv_filename): """Changes the experimental DataFrame to input exp_csv_filename data and renames columns to internal REEPS names h_i, h_eq, z_i, z_eq, {RE}_aq_i, {RE}_aq_eq, {RE}_d See class docstring on "exp_csv_filename" for further explanations. :param exp_csv_filename: (str) file name/path for experimental data csv """ self._exp_csv_filename = exp_csv_filename try: self._exp_df = pd.read_csv(self._exp_csv_filename) except FileNotFoundError: self._exp_csv_filename = pkg_resources.resource_filename( 'reeps', r'..\data\csvs\{0}'.format(self._exp_csv_filename)) self._exp_df = pd.read_csv(self._exp_csv_filename) self._exp_df_columns = ['h_i', 'h_eq', 'z_i', 'z_eq'] if self._re_species_list is None: self._re_species_list = [] for name in self._rare_earth_ion_names: species = name.replace('+', '') self._re_species_list.append(species) for species in self._re_species_list: self._exp_df_columns.append('{0}_aq_i'.format(species)) self._exp_df_columns.append('{0}_aq_eq'.format(species)) self._exp_df_columns.append('{0}_d_eq'.format(species)) self._exp_df.columns = self._exp_df_columns self.set_in_moles(feed_vol=1) self.update_predicted_dict() return None
[docs] def get_phases(self) -> list: """ Returns the list of Cantera solutions :return: (list) list of Cantera solutions/phases """ return self._phases
[docs] def set_phases(self, phases_xml_filename, phase_names): """Change list of Cantera solutions by inputting new xml file name and phase names Also runs set_in_moles to set initial molality to 1 g/L :param phases_xml_filename: (str) xml file with parameters for equilibrium calc :param phase_names: (list) names of phases in xml file """ self._phases_xml_filename = phases_xml_filename self._phase_names = phase_names # Try and except for adding package data to path. # This only works for sdist, not bdist # If bdist is needed, research "manifest.in" python setup files try: shutil.copyfile(self._phases_xml_filename, self._temp_xml_file_path) self._phases = ct.import_phases(self._phases_xml_filename, phase_names) except FileNotFoundError: self._phases_xml_filename = \ pkg_resources.resource_filename('reeps', r'..\data\xmls\{0}'.format( phases_xml_filename)) shutil.copyfile(self._phases_xml_filename, self._temp_xml_file_path) self._phases = ct.import_phases(self._phases_xml_filename, phase_names) self.set_in_moles(feed_vol=1) self.update_predicted_dict() return None
[docs] def get_opt_dict(self) -> dict: """ Returns the dictionary containing optimization information :return: (dict) dictionary containing info about which species parameters are updated to fit model to experimental data """ return self._opt_dict
[docs] def set_opt_dict(self, opt_dict): """ Change the dictionary to input opt_dict. opt_dict specifies species parameters to be updated to fit model to data See class docstring on "opt_dict" for more information. :param opt_dict: (dict) dictionary containing info about which species parameters are updated to fit model to experimental data """ self._opt_dict = opt_dict return None
[docs] def get_aq_solvent_name(self) -> str: """Returns aq_solvent_name :return: aq_solvent_name: (str) name of aqueous solvent in xml file """ return self._aq_solvent_name
[docs] def set_aq_solvent_name(self, aq_solvent_name): """ Change aq_solvent_name to input aq_solvent_name :param aq_solvent_name: (str) name of aqueous solvent in xml file """ self._aq_solvent_name = aq_solvent_name return None
[docs] def get_extractant_name(self) -> str: """Returns extractant name :return: extractant_name: (str) name of extractant in xml file """ return self._extractant_name
[docs] def set_extractant_name(self, extractant_name): """ Change extractant_name to input extractant_name :param extractant_name: (str) name of extractant in xml file """ self._extractant_name = extractant_name return None
[docs] def get_diluant_name(self) -> str: """ Returns diluant name :return: diluant_name: (str) name of diluant in xml file """ return self._diluant_name
[docs] def set_diluant_name(self, diluant_name): """ Change diluant_name to input diluant_name :param diluant_name: (str) name of diluant in xml file """ self._diluant_name = diluant_name return None
[docs] def get_complex_names(self) -> list: """Returns list of complex names :return: complex_names: (list) names of complexes in xml file. """ return self._complex_names
[docs] def set_complex_names(self, complex_names): """Change complex names list to input complex_names :param complex_names: (list) names of complexes in xml file. """ self._complex_names = complex_names return None
[docs] def get_rare_earth_ion_names(self) -> list: """Returns list of rare earth ion names :return: rare_earth_ion_names: (list) names of rare earth ions in xml file """ return self._rare_earth_ion_names
[docs] def set_rare_earth_ion_names(self, rare_earth_ion_names): """Change list of rare earth ion names to input rare_earth_ion_names :param rare_earth_ion_names: (list) names of rare earth ions in xml file """ self._rare_earth_ion_names = rare_earth_ion_names return None
[docs] def get_re_species_list(self) -> list: """Returns list of rare earth element names :return: re_species_list: (list) names of rare earth elements in xml file """ return self._re_species_list
[docs] def set_re_species_list(self, re_species_list): """Change list of rare earth ion names to input rare_earth_ion_names :param re_species_list: (list) names of rare earth elements in xml file """ self._re_species_list = re_species_list return None
[docs] def get_aq_solvent_rho(self) -> str: """Returns aqueous solvent density (g/L) :return: aq_solvent_rho: (float) density of aqueous solvent """ return self._aq_solvent_rho
[docs] def set_aq_solvent_rho(self, aq_solvent_rho): """Changes aqueous solvent density (g/L) to input aq_solvent_rho :param aq_solvent_rho: (float) density of aqueous solvent """ self._aq_solvent_rho = aq_solvent_rho return None
[docs] def get_extractant_rho(self) -> str: """Returns extractant density (g/L) :return: extractant_rho: (float) density of extractant """ return self._extractant_rho
[docs] def set_extractant_rho(self, extractant_rho): """Changes extractant density (g/L) to input extractant_rho :param extractant_rho: (float) density of extractant """ self._extractant_rho = extractant_rho return None
[docs] def get_diluant_rho(self) -> str: """Returns diluant density (g/L) :return: diluant_rho: (float) density of diluant """ return self._diluant_rho
[docs] def set_diluant_rho(self, diluant_rho): """Changes diluant density (g/L) to input diluant_rho :param diluant_rho: (float) density of diluant """ self._diluant_rho = diluant_rho return None
[docs] def set_in_moles(self, feed_vol): """Function that initializes mole fractions to input feed_vol This function is called at initialization Sets in_moles to a pd.DataFrame containing initial mole fractions Columns for species and rows for different experiments This function also calls update_predicted_dict :param feed_vol: (float) feed volume of mixture (g/L) """ phases_copy = self._phases.copy() exp_df = self._exp_df.copy() solvent_name = self._aq_solvent_name extractant_name = self._extractant_name diluant_name = self._diluant_name solvent_rho = self._aq_solvent_rho extractant_rho = self._extractant_rho diluant_rho = self._diluant_rho re_names = self._rare_earth_ion_names re_species_list = self._re_species_list mixed = ct.Mixture(phases_copy) aq_ind = None solvent_ind = None for ind, phase in enumerate(phases_copy): if solvent_name in phase.species_names: aq_ind = ind solvent_ind = phase.species_names.index(solvent_name) if aq_ind is None: raise Exception('Solvent "{0}" not found \ in xml file'.format(solvent_name)) if aq_ind == 0: org_ind = 1 else: org_ind = 0 self._aq_ind = aq_ind self._org_ind = org_ind extractant_ind = phases_copy[org_ind].species_names.index( extractant_name) diluant_ind = phases_copy[org_ind].species_names.index(diluant_name) re_ind_list = [phases_copy[aq_ind].species_names.index(re_name) for re_name in re_names] re_charges = np.array([phases_copy[aq_ind].species(re_ind).charge for re_ind in re_ind_list]) self._re_charges = re_charges mix_aq = mixed.phase(aq_ind) mix_org = mixed.phase(org_ind) solvent_mw = mix_aq.molecular_weights[solvent_ind] # g/mol extractant_mw = mix_org.molecular_weights[extractant_ind] diluant_mw = mix_org.molecular_weights[diluant_ind] if solvent_rho is None: solvent_rho = mix_aq(aq_ind).partial_molar_volumes[ solvent_ind] / solvent_mw * 1e6 # g/L self._aq_solvent_rho = solvent_rho if extractant_rho is None: extractant_rho = mix_org(org_ind).partial_molar_volumes[ extractant_ind] / extractant_mw * 1e6 self._extractant_rho = extractant_rho if diluant_rho is None: diluant_rho = mix_org(org_ind).partial_molar_volumes[ extractant_ind] / extractant_mw * 1e6 self._diluant_rho = diluant_rho in_moles_data = [] aq_phase_solvent_moles = feed_vol * solvent_rho / solvent_mw for index, row in exp_df.iterrows(): h_plus_moles = feed_vol * row['h_i'] hydroxide_ions = 0 rare_earth_moles = np.array([feed_vol * row[ '{0}_aq_i'.format(re_species)] for re_species in re_species_list]) re_charge_sum = np.sum(re_charges * rare_earth_moles) chlorine_moles = re_charge_sum + h_plus_moles extractant_moles = feed_vol * row['z_i'] extractant_vol = extractant_moles * extractant_mw / extractant_rho diluant_vol = feed_vol - extractant_vol diluant_moles = diluant_vol * diluant_rho / diluant_mw complex_moles = np.zeros(len(re_species_list)) species_moles_aq = [aq_phase_solvent_moles, h_plus_moles, hydroxide_ions, chlorine_moles] species_moles_aq.extend(list(rare_earth_moles)) species_moles_org = [extractant_moles, diluant_moles] species_moles_org.extend(list(complex_moles)) if aq_ind == 0: species_moles = species_moles_aq + species_moles_org else: species_moles = species_moles_org + species_moles_aq in_moles_data.append(species_moles) self._in_moles = pd.DataFrame( in_moles_data, columns=mixed.species_names) self.update_predicted_dict() return None
[docs] def get_in_moles(self) -> pd.DataFrame: """Returns the in_moles DataFrame which contains the initial mole fractions of each species for each experiment :return: in_moles: (pd.DataFrame) DataFrame with initial mole fractions """ return self._in_moles
[docs] def set_objective_function(self, objective_function): """Change objective function to input objective_function. See class docstring on "objective_function" for instructions :param objective_function: (func) Objective function to quantify error between model and experimental data """ if not callable(objective_function) \ and objective_function not in self._built_in_obj_list: raise Exception( "objective_function must be a function " "or in this strings list: {0}".format( self._built_in_obj_list)) if callable(objective_function): if len(signature(objective_function).parameters) < 2: raise Exception( "objective_function must be a function " "with at least 3 arguments:" " f(predicted_dict, experimental_df, kwargs)") if objective_function == 'Log-MSE': objective_function = self.log_mean_squared_error self._objective_function = objective_function return None
[docs] def get_objective_function(self): """Returns objective function :return: objective_function: (func) Objective function to quantify error between model and experimental data """ return self._objective_function
[docs] def set_optimizer(self, optimizer): """Change optimizer function to input optimizer. See class docstring on "optimizer" for instructions :param optimizer: (func) Optimizer function to minimize objective function """ if not callable(optimizer) \ and optimizer not in self._built_in_opt_list: raise Exception( "optimizer must be a function " "or in this strings list: {0}".format( self._built_in_opt_list)) if callable(optimizer): if len(signature(optimizer).parameters) < 2: raise Exception( "optimizer must be a function " "with at least 2 arguments: " "f(objective_func,x_guess, kwargs)") if optimizer == 'SLSQP': optimizer = self.slsqp_optimizer self._optimizer = optimizer return None
[docs] def get_optimizer(self): """Returns objective function :return: optimizer: (func) Optimizer function to minimize objective function """ return self._optimizer
[docs] def get_temp_xml_file_path(self): """Returns path to temporary xml file. This xml file is a duplicate of the phases_xml_file name and is modified during the optimization process to avoid changing the original xml file. :return: temp_xml_file_path: (str) path to temporary xml file. """ return self._temp_xml_file_path
[docs] def set_temp_xml_file_path(self, temp_xml_file_path): """Changes temporary xml file path to input temp_xml_file_path. This xml file is a duplicate of the phases_xml_file name and is modified during the optimization process to avoid changing the original xml file. :param temp_xml_file_path: (str) path to temporary xml file. """ self._temp_xml_file_path = temp_xml_file_path return None
[docs] def update_predicted_dict(self, phases_xml_filename=None, phase_names=None): """Function that computes the predicted equilibrium concentrations the fed phases_xml_filename parameters predicts given the initial mole fractions set by in_moles() :param phases_xml_filename: (str)xml file with parameters for equilibrium calc. If ``None``, the current phases_xml_filename is used. :param phase_names: (list) names of phases in xml file. If ``None``, the current phases_names is used. """ if phases_xml_filename is None: phases_xml_filename = self._phases_xml_filename if phase_names is None: phase_names = self._phase_names aq_ind = self._aq_ind org_ind = self._org_ind complex_names = self._complex_names extractant_name = self._extractant_name rare_earth_ion_names = self._rare_earth_ion_names in_moles = self._in_moles re_species_list = self._re_species_list phases_copy = ct.import_phases(phases_xml_filename, phase_names) mix = ct.Mixture(phases_copy) key_names = ['h_eq', 'z_eq'] for re_species in re_species_list: key_names.append('{0}_aq_eq'.format(re_species)) key_names.append('{0}_org_eq'.format(re_species)) key_names.append('{0}_d_eq'.format(re_species)) predicted_dict = {'{0}'.format(key_name): [] for key_name in key_names} for row in in_moles.values: mix.species_moles = row mix.equilibrate('TP', log_level=0) re_org_array = np.array([mix.species_moles[mix.species_index( org_ind, complex_name)] for complex_name in complex_names]) re_aq_array = np.array([mix.species_moles[mix.species_index( aq_ind, re_ion_name)] for re_ion_name in rare_earth_ion_names]) d_array = re_org_array / re_aq_array hydrogen_ions = mix.species_moles[mix.species_index(aq_ind, 'H+')] extractant = mix.species_moles[mix.species_index( org_ind, extractant_name)] for index, re_species in enumerate(re_species_list): predicted_dict['{0}_aq_eq'.format( re_species)].append(re_aq_array[index]) predicted_dict['{0}_org_eq'.format( re_species)].append(re_org_array[index]) predicted_dict['{0}_d_eq'.format( re_species)].append(d_array[index]) predicted_dict['h_eq'].append(hydrogen_ions) predicted_dict['z_eq'].append(extractant) for key, value in predicted_dict.items(): predicted_dict[key] = np.array(value) self._predicted_dict = predicted_dict return None
[docs] def get_predicted_dict(self): """Returns predicted dictionary of species concentrations that xml parameters predicts given current in_moles :return: predicted_dict: (dict) dictionary of species concentrations """ return self._predicted_dict
def _internal_objective(self, x, kwargs=None): """ Internal objective function. Uses objective function to compute value If the optimizer requires vectorized variables ie pso, this function takes care of it :param x: (list) thermo properties varied to minimize objective func :param kwargs: (list) arguments for objective_function """ temp_xml_file_path = self._temp_xml_file_path exp_df = self._exp_df objective_function = self._objective_function opt_dict = copy.deepcopy(self._opt_dict) x = np.array(x) if len(x.shape) == 1: xs = np.array([x]) vectorized_x = False else: vectorized_x = True xs = x objective_values = [] for x in xs: i = 0 for species_name in opt_dict.keys(): for thermo_prop in opt_dict[species_name].keys(): opt_dict[species_name][thermo_prop] *= x[i] i += 1 self.update_xml(opt_dict, temp_xml_file_path) self.update_predicted_dict(temp_xml_file_path) predicted_dict = self.get_predicted_dict() self.update_predicted_dict() if kwargs is None: # noinspection PyCallingNonCallable obj = objective_function(predicted_dict, exp_df) else: # noinspection PyCallingNonCallable obj = objective_function(predicted_dict, exp_df, **kwargs) objective_values.append(obj) if vectorized_x: objective_values = np.array(objective_values) else: objective_values = objective_values[0] return objective_values
[docs] def fit(self, objective_function=None, optimizer=None, objective_kwargs=None, optimizer_kwargs=None) -> dict: """Fits experimental to modeled data by minimizing objective function with optimizer. Returns dictionary with opt_dict structure :param objective_function: (function) function to compute objective :param optimizer: (function) function to perform optimization :param optimizer_kwargs: (dict) arguments for optimizer :param objective_kwargs: (dict) arguments for objective function :returns opt_dict: (dict) optimized opt_dict. Has identical structure as opt_dict """ if objective_function is not None: self.set_objective_function(objective_function) if optimizer is not None: self.set_optimizer(optimizer) def objective(x): return self._internal_objective(x, objective_kwargs) optimizer = self._optimizer opt_dict = copy.deepcopy(self._opt_dict) i = 0 for species_name in opt_dict.keys(): for _ in opt_dict[species_name].keys(): i += 1 x_guess = np.ones(i) if optimizer_kwargs is None: # noinspection PyCallingNonCallable est_parameters = optimizer(objective, x_guess) else: # noinspection PyCallingNonCallable est_parameters = optimizer(objective, x_guess, **optimizer_kwargs) i = 0 for species_name in opt_dict.keys(): for thermo_prop in opt_dict[species_name].keys(): opt_dict[species_name][thermo_prop] *= est_parameters[i] i += 1 return opt_dict
[docs] def update_xml(self, info_dict, phases_xml_filename=None): """updates xml file with info_dict :param info_dict: (dict) info in {species_names:{thermo_prop:val}} Requires an identical structure to opt_dict :param phases_xml_filename: (str) xml filename if editing other xml If ``None``, the current xml will be modified and the internal Cantera phases will be refreshed to the new values. """ if phases_xml_filename is None: phases_xml_filename = self._phases_xml_filename tree = ET.parse(phases_xml_filename) root = tree.getroot() # Update xml file for species_name in info_dict.keys(): for thermo_prop in info_dict[species_name].keys(): for species in root.iter('species'): if species.attrib['name'] == species_name: for changed_prop in species.iter(thermo_prop): changed_prop.text = str( info_dict[species_name][thermo_prop]) now = datetime.now() changed_prop.set('updated', 'Updated at {0}:{1} {2}-{3}-{4}' .format(now.hour, now.minute, now.month, now.day, now.year)) tree.write(phases_xml_filename) if phases_xml_filename == self._phases_xml_filename: self.set_phases(self._phases_xml_filename, self._phase_names) return None
[docs] def parity_plot(self, compared_value=None, save_path=None, print_r_squared=False): """ Parity plot between measured and predicted compared_value. Default compared value is {RE_1}_aq_eq :param compared_value: (str) Quantity to compare predicted and experimental data. Can be any column containing "eq" in exp_df i.e. h_eq, z_eq, {RE}_d_eq, etc. :param save_path: (str) save path for parity plot :param print_r_squared: (boolean) To plot or not to plot r-squared value. Prints 2 places past decimal """ exp_df = self.get_exp_df() predicted_dict = self.get_predicted_dict() re_species_list = self._re_species_list extractant_name = self.get_extractant_name() re_charges = self._re_charges if compared_value is None: compared_value = '{0}_aq_eq'.format(re_species_list[0]) pred = predicted_dict[compared_value] meas = exp_df[compared_value].values min_data = np.min([pred, meas]) max_data = np.max([pred, meas]) min_max_data = np.array([min_data, max_data]) name_breakdown = re.findall('[^_\W]+', compared_value) compared_species = name_breakdown[0] if compared_species == 'h': species_name = '$H^+$' elif compared_species == 'z': species_name = extractant_name else: phase = name_breakdown[1] if phase == 'aq': re_charge = re_charges[re_species_list.index(compared_species)] species_name = '$%s^{%d+}$' % (compared_species, re_charge) elif phase == 'd': species_name = '{0} distribution ratio'.format( compared_species) else: species_name = '{0} complex'.format(compared_species) fig, ax = plt.subplots() p1 = sns.scatterplot(meas, pred, color="r", label="{0} eq. conc. (mol/L)".format( species_name), legend=False) sns.lineplot(min_max_data, min_max_data, color="b", label="") if print_r_squared: p1.text(min_max_data[0], min_max_data[1] * 0.9, '$R^2$={0:.2f}'.format(self.r_squared(compared_value))) plt.legend(loc='lower right') else: plt.legend() ax.set(xlabel='Measured', ylabel='Predicted') plt.show() if save_path is not None: plt.savefig(save_path, bbox_inches='tight') return None
[docs] def r_squared(self, compared_value=None): """r-squared value comparing measured and predicted compared value Closer to 1, the better the model's predictions. :param compared_value: (str) Quantity to compare predicted and experimental data. Can be any column containing "eq" in exp_df i.e. h_eq, z_eq, {RE}_d_eq, etc. """ exp_df = self.get_exp_df() predicted_dict = self.get_predicted_dict() re_species_list = self._re_species_list if compared_value is None: compared_value = '{0}_aq_eq'.format(re_species_list[0]) pred = predicted_dict[compared_value] predicted_y = np.array(pred) actual_y = exp_df[compared_value].values num = sum((actual_y - predicted_y) ** 2) den = sum((actual_y - np.mean(actual_y)) ** 2) r_2 = (1 - num / den) return r_2