You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
LLEPE/docs/Examples/iterative_fitter_eval_graph...

129 lines
5.7 KiB

import llepe
import pandas as pd
import numpy as np
import json
import matplotlib as plt
import matplotlib
font = {'family': 'sans serif',
'size': 24}
matplotlib.rc('font', **font)
plt.rc('xtick', labelsize=18)
plt.rc('ytick', labelsize=18)
def ext_to_complex(h0, custom_obj_dict, mini_species):
linear_params = custom_obj_dict['lin_param_df']
row = linear_params[linear_params['species'] == mini_species]
return row['slope'].values[0] * h0[0] + row['intercept'].values[0]
def mod_lin_param_df(lp_df, input_val, mini_species, mini_lin_param):
new_lp_df = lp_df.copy()
index = new_lp_df.index[new_lp_df['species'] == mini_species].tolist()[0]
new_lp_df.at[index, mini_lin_param] = input_val
return new_lp_df
info_df = pd.read_csv('outputs/iterative_fitter_output2.csv')
pitzer_params_filename = "../../data/jsons/min_h0_pitzer_params.txt"
with open(pitzer_params_filename) as file:
pitzer_params_dict = json.load(file)
pitzer_params_df = pd.DataFrame(pitzer_params_dict)
species_list = 'Nd,Pr,Ce,La,Dy,Sm,Y'.split(',')
pitzer_param_list = ['beta0', 'beta1']
labeled_data = pd.read_csv("../../data/csvs/"
"PC88A_HCL_NdPrCeLaDySmY.csv")
exp_data = labeled_data.drop(labeled_data.columns[0], axis=1)
xml_file = "PC88A_HCL_NdPrCeLaDySmY_w_pitzer.xml"
lin_param_df = pd.read_csv("../../data/csvs"
"/zeroes_removed_min_h0_pitzer_lin_params.csv")
estimator_params = {'exp_data': exp_data,
'phases_xml_filename': xml_file,
'phase_names': ['HCl_electrolyte', 'PC88A_liquid'],
'aq_solvent_name': 'H2O(L)',
'extractant_name': '(HA)2(org)',
'diluant_name': 'dodecane',
'complex_names': ['{0}(H(A)2)3(org)'.format(species)
for species in species_list],
'extracted_species_ion_names': ['{0}+++'.format(species)
for species in
species_list],
'aq_solvent_rho': 1000.0,
'extractant_rho': 960.0,
'diluant_rho': 750.0,
'temp_xml_file_path': 'outputs/temp.xml',
'objective_function': llepe.lmse_perturbed_obj
}
dependant_params_dict = {}
for species, complex_name in zip(species_list,
estimator_params['complex_names']):
inner_dict = {'upper_element_name': 'species',
'upper_attrib_name': 'name',
'upper_attrib_value': complex_name,
'lower_element_name': 'h0',
'lower_attrib_name': None,
'lower_attrib_value': None,
'input_format': '{0}',
'function': ext_to_complex,
'kwargs': {"mini_species": species},
'independent_params': '(HA)2(org)_h0'}
dependant_params_dict['{0}_h0'.format(complex_name)] = inner_dict
info_dict = {'(HA)2(org)_h0': {'upper_element_name': 'species',
'upper_attrib_name': 'name',
'upper_attrib_value': '(HA)2(org)',
'lower_element_name': 'h0',
'lower_attrib_name': None,
'lower_attrib_value': None,
'input_format': '{0}',
'input_value':
info_df.iloc[-1, :]['best_ext_h0']}}
for species in species_list:
for pitzer_param in pitzer_param_list:
pitzer_str = "{0}_{1}".format(species, pitzer_param)
value = info_df.iloc[-1, :][pitzer_str]
pitzer_params_dict[pitzer_str]['input_value'] = value
lin_str = "{0}_slope".format(species)
inner_dict = {'custom_object_name': 'lin_param_df',
'function': mod_lin_param_df,
'kwargs': {'mini_species': species,
'mini_lin_param': 'slope'},
'input_value': 3
}
info_dict[lin_str] = inner_dict
lin_str = "{0}_intercept".format(species)
value = info_df.iloc[-1, :][lin_str]
inner_dict = {'custom_object_name': 'lin_param_df',
'function': mod_lin_param_df,
'kwargs': {'mini_species': species,
'mini_lin_param': 'intercept'},
'input_value': value
}
info_dict[lin_str] = inner_dict
info_dict.update(pitzer_params_dict)
estimator = llepe.LLEPE(**estimator_params)
estimator.set_custom_objects_dict({'lin_param_df': lin_param_df})
estimator.update_custom_objects_dict(info_dict)
estimator.update_xml(info_dict,
dependant_params_dict=dependant_params_dict)
exp_data = estimator.get_exp_df()
feed_cols = []
for col in exp_data.columns:
if 'aq_i' in col:
feed_cols.append(col)
exp_data['total_re'] = exp_data[feed_cols].sum(axis=1)
for species in species_list:
save_name = 'outputs/parity_iterative_fitter_{0}_org_eq'.format(species)
fig, ax = estimator.parity_plot('{0}_org_eq'.format(species),
c_data=exp_data[
'total_re'].values,
c_label='Feed total RE '
'molarity (mol/L)',
print_r_squared=True,
save_path=save_name)
# short_info_dict = {}
# for key, value in info_dict.items():
# short_info_dict[key] = value['input_value']
# with open("outputs/iterative_fitter_short_info_dict.txt", 'w') as file:
# json.dump(short_info_dict, file)