mirror of https://github.com/ANL-CEEESA/LLEPE
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
280 lines
11 KiB
280 lines
11 KiB
# LLEPE: Liquid-Liquid Equilibrium Parameter Estimator
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See LICENSE for more details.
|
|
|
|
import llepe
|
|
import pandas as pd
|
|
import numpy as np
|
|
import json
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib
|
|
import re
|
|
|
|
|
|
def set_size(w, h, ax=None):
|
|
""" w, h: width, height in inches """
|
|
if not ax:
|
|
ax = plt.gca()
|
|
left = ax.figure.subplotpars.left
|
|
right = ax.figure.subplotpars.right
|
|
top = ax.figure.subplotpars.top
|
|
bottom = ax.figure.subplotpars.bottom
|
|
fig_width = float(w) / (right - left)
|
|
fig_height = float(h) / (top - bottom)
|
|
ax.figure.set_size_inches(fig_width, fig_height)
|
|
|
|
|
|
font = {'family': 'sans serif',
|
|
'size': 24}
|
|
matplotlib.rc('font', **font)
|
|
matplotlib.rc('xtick', labelsize=18)
|
|
matplotlib.rc('ytick', labelsize=18)
|
|
matplotlib.rcParams['lines.linewidth'] = 4
|
|
matplotlib.rcParams['lines.markersize'] = 10
|
|
|
|
|
|
def ext_to_complex(h0, custom_obj_dict, mini_species):
|
|
linear_params = custom_obj_dict['lin_param_df']
|
|
row = linear_params[linear_params['species'] == mini_species]
|
|
return row['slope'].values[0] * h0[0] + row['intercept'].values[0]
|
|
|
|
|
|
def mod_lin_param_df(lp_df, input_val, mini_species, mini_lin_param):
|
|
new_lp_df = lp_df.copy()
|
|
index = new_lp_df.index[new_lp_df['species'] == mini_species].tolist()[0]
|
|
new_lp_df.at[index, mini_lin_param] = input_val
|
|
return new_lp_df
|
|
|
|
|
|
info_df = pd.read_csv('outputs/iterative_fitter_output4.csv')
|
|
test_row = -1
|
|
pitzer_params_filename = "../../data/jsons/min_h0_pitzer_params.txt"
|
|
with open(pitzer_params_filename) as file:
|
|
pitzer_params_dict = json.load(file)
|
|
pitzer_params_df = pd.DataFrame(pitzer_params_dict)
|
|
species_list = 'Nd,Pr,Ce,La,Dy,Sm,Y'.split(',')
|
|
pitzer_param_list = ['beta0', 'beta1']
|
|
labeled_data = pd.read_csv("../../data/csvs/"
|
|
"PC88A_HCL_NdPrCeLaDySmY.csv")
|
|
labeled_data = labeled_data.sort_values(['Feed Pr[M]', 'Feed Ce[M]'],
|
|
ascending=True)
|
|
exp_data = labeled_data.drop(labeled_data.columns[0], axis=1)
|
|
xml_file = "PC88A_HCL_NdPrCeLaDySmY_w_pitzer.xml"
|
|
lin_param_df = pd.read_csv("../../data/csvs"
|
|
"/zeroes_removed_min_h0_pitzer_lin_params.csv")
|
|
estimator_params = {'exp_data': exp_data,
|
|
'phases_xml_filename': xml_file,
|
|
'phase_names': ['HCl_electrolyte', 'PC88A_liquid'],
|
|
'aq_solvent_name': 'H2O(L)',
|
|
'extractant_name': '(HA)2(org)',
|
|
'diluant_name': 'dodecane',
|
|
'complex_names': ['{0}(H(A)2)3(org)'.format(species)
|
|
for species in species_list],
|
|
'extracted_species_ion_names': ['{0}+++'.format(species)
|
|
for species in
|
|
species_list],
|
|
'aq_solvent_rho': 1000.0,
|
|
'extractant_rho': 960.0,
|
|
'diluant_rho': 750.0,
|
|
'temp_xml_file_path': 'outputs/temp.xml',
|
|
'objective_function': llepe.lmse_perturbed_obj
|
|
}
|
|
dependant_params_dict = {}
|
|
for species, complex_name in zip(species_list,
|
|
estimator_params['complex_names']):
|
|
inner_dict = {'upper_element_name': 'species',
|
|
'upper_attrib_name': 'name',
|
|
'upper_attrib_value': complex_name,
|
|
'lower_element_name': 'h0',
|
|
'lower_attrib_name': None,
|
|
'lower_attrib_value': None,
|
|
'input_format': '{0}',
|
|
'function': ext_to_complex,
|
|
'kwargs': {"mini_species": species},
|
|
'independent_params': '(HA)2(org)_h0'}
|
|
dependant_params_dict['{0}_h0'.format(complex_name)] = inner_dict
|
|
info_dict = {'(HA)2(org)_h0': {'upper_element_name': 'species',
|
|
'upper_attrib_name': 'name',
|
|
'upper_attrib_value': '(HA)2(org)',
|
|
'lower_element_name': 'h0',
|
|
'lower_attrib_name': None,
|
|
'lower_attrib_value': None,
|
|
'input_format': '{0}',
|
|
'input_value':
|
|
info_df.iloc[test_row, :]['best_ext_h0']}}
|
|
for species in species_list:
|
|
for pitzer_param in pitzer_param_list:
|
|
pitzer_str = "{0}_{1}".format(species, pitzer_param)
|
|
value = info_df.iloc[test_row, :][pitzer_str]
|
|
pitzer_params_dict[pitzer_str]['input_value'] = value
|
|
lin_str = "{0}_slope".format(species)
|
|
inner_dict = {'custom_object_name': 'lin_param_df',
|
|
'function': mod_lin_param_df,
|
|
'kwargs': {'mini_species': species,
|
|
'mini_lin_param': 'slope'},
|
|
'input_value': 3
|
|
}
|
|
info_dict[lin_str] = inner_dict
|
|
lin_str = "{0}_intercept".format(species)
|
|
value = info_df.iloc[test_row, :][lin_str]
|
|
inner_dict = {'custom_object_name': 'lin_param_df',
|
|
'function': mod_lin_param_df,
|
|
'kwargs': {'mini_species': species,
|
|
'mini_lin_param': 'intercept'},
|
|
'input_value': value
|
|
}
|
|
info_dict[lin_str] = inner_dict
|
|
|
|
info_dict.update(pitzer_params_dict)
|
|
estimator = llepe.LLEPE(**estimator_params)
|
|
estimator.set_custom_objects_dict({'lin_param_df': lin_param_df})
|
|
estimator.update_custom_objects_dict(info_dict)
|
|
estimator.update_xml(info_dict,
|
|
dependant_params_dict=dependant_params_dict)
|
|
compared_value = 'La_org_eq'
|
|
plot_title = None
|
|
legend = True
|
|
predicted_dict = estimator.get_predicted_dict()
|
|
exp_df = estimator.get_exp_df()
|
|
pred = pd.DataFrame(predicted_dict)[compared_value].fillna(0).values
|
|
meas = exp_df[compared_value].fillna(0).values
|
|
name_breakdown = re.findall('[^_\W]+', compared_value)
|
|
compared_species = name_breakdown[0]
|
|
data_labels = list(labeled_data['label'])
|
|
if compared_species == 'h':
|
|
feed_molarity = exp_df['h_i'].fillna(0).values
|
|
elif compared_species == 'z':
|
|
feed_molarity = exp_df['z_i'].fillna(0).values
|
|
else:
|
|
feed_molarity = exp_df[
|
|
'{0}_aq_i'.format(compared_species)].fillna(0).values
|
|
combined_df = pd.DataFrame({'pred': pred,
|
|
'meas': meas,
|
|
'label': data_labels,
|
|
'feed_molarity': feed_molarity})
|
|
combined_df = combined_df[(combined_df['feed_molarity'] != 0)]
|
|
meas = combined_df['meas'].values
|
|
pred = combined_df['pred'].values
|
|
|
|
min_data = np.min([pred, meas])
|
|
max_data = np.max([pred, meas])
|
|
min_max_data = np.array([min_data, max_data])
|
|
|
|
if compared_species == 'h':
|
|
default_title = '$H^+$ eq. conc. (mol/L)'
|
|
elif compared_species == 'z':
|
|
default_title = '{0} eq. conc. (mol/L)'.format(extractant_name)
|
|
else:
|
|
phase = name_breakdown[1]
|
|
if phase == 'aq':
|
|
extracted_species_charge = extracted_species_charges[
|
|
extracted_species_list.index(
|
|
compared_species)]
|
|
default_title = '$%s^{%d+}$ eq. conc. (mol/L)' \
|
|
% (compared_species, extracted_species_charge)
|
|
elif phase == 'd':
|
|
default_title = '{0} distribution ratio'.format(
|
|
compared_species)
|
|
else:
|
|
default_title = '{0} complex eq. conc. (mol/L)'.format(
|
|
compared_species)
|
|
fig, ax = plt.subplots(figsize=(8, 6))
|
|
|
|
if isinstance(data_labels, list):
|
|
# unique_labels = list(set(data_labels))
|
|
unique_labels = ['Li (1987)',
|
|
'Kim (2012)',
|
|
'Formiga (2016)',
|
|
'Banda (2014)',
|
|
]
|
|
color_list = ['r', 'g', 'b', 'm']
|
|
marker_list = ['o', 's', 'P', 'X', ]
|
|
for ind, label in enumerate(unique_labels):
|
|
filtered_data = combined_df[combined_df['label'] == label]
|
|
filtered_meas = filtered_data['meas']
|
|
filtered_pred = filtered_data['pred']
|
|
if len(filtered_pred) != 0:
|
|
ax.scatter(filtered_meas,
|
|
filtered_pred,
|
|
label=label,
|
|
color=color_list[ind],
|
|
marker=marker_list[ind])
|
|
if legend:
|
|
ax.legend(loc=4)
|
|
ax.plot(min_max_data, min_max_data, color="b", label="")
|
|
|
|
ax.text(min_max_data[0],
|
|
min_max_data[1] * 0.9,
|
|
'$R^2$={0:.2f}'.format(estimator.r_squared(compared_value)))
|
|
|
|
ax.set(xlabel='Measured', ylabel='Predicted')
|
|
if plot_title is None:
|
|
ax.set_title(default_title)
|
|
set_size(8, 6)
|
|
plt.tight_layout()
|
|
plt.show()
|
|
# exp_data = estimator.get_exp_df()
|
|
# feed_cols = []
|
|
# for col in exp_data.columns:
|
|
# if 'aq_i' in col:
|
|
# feed_cols.append(col)
|
|
# exp_data['total_re'] = exp_data[feed_cols].sum(axis=1)
|
|
# label_list = []
|
|
# for index, row in exp_data[feed_cols].iterrows():
|
|
# bool_list = list((row > 0).values)
|
|
# label = ''
|
|
# for species, el in zip(species_list, bool_list):
|
|
# if el:
|
|
# label = '{0}-{1}'.format(label, species)
|
|
# label = label[1:]
|
|
# label_list.append(label)
|
|
# r2s = ""
|
|
# for species in species_list:
|
|
# # if species=='La':
|
|
# # save_name = 'outputs' \
|
|
# # '/parity_iterative_fitter_{0}_org_eq'.format(species)
|
|
# save_name = None
|
|
# fig, ax = estimator.parity_plot('{0}_org_eq'.format(species),
|
|
# c_data=
|
|
# exp_data['total_re'].values,
|
|
# c_label='Feed total RE '
|
|
# 'molarity (mol/L)',
|
|
# print_r_squared=False,
|
|
# plot_title='')
|
|
# ax.plot([0, 0.05], [0, 0.05], c='b')
|
|
# ax.text(0.01, 0.04,
|
|
# '$R^2$={0:.2f}'.format(estimator.r_squared(
|
|
# '{0}_org_eq'.format(species))))
|
|
# ax.set_xlim((0, 0.05))
|
|
# ax.set_ylim((0, 0.05))
|
|
# r2s += str(estimator.r_squared('{0}_org_eq'.format(species))) + ','
|
|
#
|
|
# # fig, ax = estimator.parity_plot('{0}_org_eq'.format(species),
|
|
# # data_labels=list(labeled_data['label']),
|
|
# # print_r_squared=True,
|
|
# # save_path=save_name)
|
|
# # ax.legend(loc=4)
|
|
# pred_df = pd.DataFrame(estimator.get_predicted_dict())
|
|
# new_cols = []
|
|
# for col in pred_df.columns:
|
|
# new_cols.append("pred_{0}".format(col))
|
|
# pred_df.columns = new_cols
|
|
# new_cols = ['label',
|
|
# 'h_i',
|
|
# 'h_eq',
|
|
# 'z_i',
|
|
# 'z_eq'
|
|
# ]
|
|
# for species in species_list:
|
|
# new_cols.append("{0}_aq_i".format(species))
|
|
# new_cols.append("{0}_aq_eq".format(species))
|
|
# new_cols.append("{0}_d_eq".format(species))
|
|
# labeled_data.columns = new_cols
|
|
# total_df = labeled_data.join(pred_df)
|
|
# total_df.to_csv('if_mse_total_df.csv')
|
|
# short_info_dict = {}
|
|
# for key, value in info_dict.items():
|
|
# short_info_dict[key] = value['input_value']
|
|
# with open("outputs/iterative_fitter_short_info_dict.txt", 'w') as file:
|
|
# json.dump(short_info_dict, file)
|