You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
LLEPE/reeps.py

353 lines
13 KiB

from datetime import datetime
import cantera as ct
import pandas as pd
import numpy as np
from scipy.optimize import minimize
# noinspection PyPep8Naming
import xml.etree.ElementTree as ET
import seaborn as sns
import matplotlib.pyplot as plt
import shutil
import copy
sns.set()
class REEPS:
"""REEPS (Rare earth extraction parameter searcher)
Takes in experimental data
Returns parameters for GEM
:param exp_csv_filename: (str) csv file name with experimental data
:param phases_xml_filename: (str) xml file with parameters for equilibrium calc
:param opt_dict: (dict) optimize info {species:{thermo_prop:guess}
:param phase_names: (list) names of phases in xml file
:param aq_solvent_name: (str) name of aqueous solvent in xml file
:param extractant_name: (str) name of extractant in xml file
:param diluant_name: (str) name of diluant in xml file
:param complex_name: (str) name of complex in xml file
:param rare_earth_ion_name: (str) name of rare earth ion in xml file
:param aq_solvent_rho: (float) density of solvent (g/L)
:param extractant_rho: (float) density of extractant (g/L)
:param diluant_rho: (float) density of extractant (g/L)
If no density is given, molar volume/molecular weight is used from xml
"""
def __init__(self,
exp_csv_filename,
phases_xml_filename,
opt_dict,
phase_names,
aq_solvent_name,
extractant_name,
diluant_name,
complex_name,
rare_earth_ion_name,
aq_solvent_rho=None,
extractant_rho=None,
diluant_rho=None,
):
self._exp_csv_filename = exp_csv_filename
self._phases_xml_filename = phases_xml_filename
self._opt_dict = opt_dict
self._phase_names = phase_names
self._aq_solvent_name = aq_solvent_name
self._extractant_name = extractant_name
self._diluant_name = diluant_name
self._complex_name = complex_name
self._rare_earth_ion_name = rare_earth_ion_name
self._aq_solvent_rho = aq_solvent_rho
self._extractant_rho = extractant_rho
self._diluant_rho = diluant_rho
self._temp_xml_filename = "temp.xml"
shutil.copyfile(phases_xml_filename, self._temp_xml_filename)
self._phases = ct.import_phases(phases_xml_filename, phase_names)
self._exp_df = pd.read_csv(self._exp_csv_filename)
self._in_moles = None
self._aq_ind = None
self._org_ind = None
self.set_in_moles(feed_vol=1)
def get_exp_csv_filename(self) -> str:
return self._exp_csv_filename
def set_exp_csv_filename(self, exp_csv_filename):
self._exp_csv_filename = exp_csv_filename
self._exp_df = pd.read_csv(self._exp_csv_filename)
return None
def get_phases(self) -> list:
return self._phases
def set_phases(self, phases_xml_filename, phase_names):
"""Change xml and phase names
Also runs set_in_mole to set initial moles to 1 g/L"""
self._phases_xml_filename = phases_xml_filename
self._phase_names = phase_names
self._phases = ct.import_phases(phases_xml_filename, phase_names)
self.set_in_moles(feed_vol=1)
return None
def get_opt_dict(self) -> dict:
return self._opt_dict
def set_opt_dict(self, opt_dict):
self._opt_dict = opt_dict
return None
def get_aq_solvent_name(self) -> str:
return self._aq_solvent_name
def set_aq_solvent_name(self, aq_solvent_name):
self._aq_solvent_name = aq_solvent_name
return None
def get_extractant_name(self) -> str:
return self._extractant_name
def set_extractant_name(self, extractant_name):
self._extractant_name = extractant_name
return None
def get_diluant_name(self) -> str:
return self._diluant_name
def set_diluant_name(self, diluant_name):
self._diluant_name = diluant_name
return None
def get_complex_name(self) -> str:
return self._complex_name
def set_complex_name(self, complex_name):
self._complex_name = complex_name
return None
def get_rare_earth_ion_name(self) -> str:
return self._rare_earth_ion_name
def set_rare_earth_ion_name(self, rare_earth_ion_name):
self._rare_earth_ion_name = rare_earth_ion_name
return None
def get_aq_solvent_rho(self) -> str:
return self._aq_solvent_rho
def set_aq_solvent_rho(self, aq_solvent_rho):
self._aq_solvent_rho = aq_solvent_rho
return None
def get_extractant_rho(self) -> str:
return self._extractant_rho
def set_extractant_rho(self, extractant_rho):
self._extractant_rho = extractant_rho
return None
def get_diluant_rho(self) -> str:
return self._diluant_rho
def set_diluant_rho(self, diluant_rho):
self._diluant_rho = diluant_rho
return None
def set_in_moles(self, feed_vol):
"""Function that initializes mole fractions
:param feed_vol: (float) feed volume of mixture (g/L)"""
phases_copy = self._phases.copy()
exp_df = self._exp_df.copy()
solvent_name = self._aq_solvent_name
extractant_name = self._extractant_name
diluant_name = self._diluant_name
solvent_rho = self._aq_solvent_rho
extractant_rho = self._extractant_rho
diluant_rho = self._diluant_rho
re_name = self._rare_earth_ion_name
mixed = ct.Mixture(phases_copy)
aq_ind = None
solvent_ind = None
for ind, phase in enumerate(phases_copy):
if solvent_name in phase.species_names:
aq_ind = ind
solvent_ind = phase.species_names.index(solvent_name)
if aq_ind is None:
raise Exception('Solvent "{0}" not found \
in xml file'.format(solvent_name))
if aq_ind == 0:
org_ind = 1
else:
org_ind = 0
self._aq_ind = aq_ind
self._org_ind = org_ind
extractant_ind = phases_copy[org_ind].species_names.index(
extractant_name)
diluant_ind = phases_copy[org_ind].species_names.index(diluant_name)
re_ind = phases_copy[aq_ind].species_names.index(re_name)
re_charge = phases_copy[aq_ind].species(re_ind).charge
mix_aq = mixed.phase(aq_ind)
mix_org = mixed.phase(org_ind)
solvent_mw = mix_aq.molecular_weights[solvent_ind] # g/mol
extractant_mw = mix_org.molecular_weights[extractant_ind]
diluant_mw = mix_org.molecular_weights[diluant_ind]
if solvent_rho is None:
solvent_rho = mix_aq(aq_ind).partial_molar_volumes[
solvent_ind] / solvent_mw * 1e6 # g/L
self._aq_solvent_rho = solvent_rho
if extractant_rho is None:
extractant_rho = mix_org(org_ind).partial_molar_volumes[
extractant_ind] / extractant_mw * 1e6
self._extractant_rho = extractant_rho
if diluant_rho is None:
diluant_rho = mix_org(org_ind).partial_molar_volumes[
extractant_ind] / extractant_mw * 1e6
self._diluant_rho = diluant_rho
in_moles_data = []
aq_phase_solvent_moles = feed_vol * solvent_rho / solvent_mw
for row in exp_df.values:
h_plus_moles = feed_vol * row[0]
hydroxide_ions = 0
rare_earth_moles = feed_vol * row[6]
chlorine_moles = re_charge * rare_earth_moles + h_plus_moles
extractant_moles = feed_vol * row[3]
extractant_vol = extractant_moles * extractant_mw / extractant_rho
diluant_vol = feed_vol - extractant_vol
diluant_moles = diluant_vol * diluant_rho / diluant_mw
complex_moles = 0
species_moles = [aq_phase_solvent_moles,
h_plus_moles,
hydroxide_ions,
chlorine_moles,
rare_earth_moles,
extractant_moles,
diluant_moles,
complex_moles,
]
in_moles_data.append(species_moles)
self._in_moles = pd.DataFrame(in_moles_data, columns=mixed.species_names)
return None
def get_in_moles(self) -> pd.DataFrame:
return self._in_moles
def objective(self, x):
"""Log mean squared error between measured and predicted data
:param x: (list) thermo properties varied to minimize LMSE"""
temp_xml_filename = self._temp_xml_filename
phase_names = self._phase_names
aq_ind = self._aq_ind
org_ind = self._org_ind
complex_name = self._complex_name
rare_earth_ion_name = self._rare_earth_ion_name
in_moles = self._in_moles
exp_df = self._exp_df
x = np.array(x)
opt_dict = copy.deepcopy(self._opt_dict)
i = 0
for species_name in opt_dict.keys():
for thermo_prop in opt_dict[species_name].keys():
opt_dict[species_name][thermo_prop] *= x[i]
i += 1
self.update_xml(opt_dict, temp_xml_filename)
phases_copy = ct.import_phases(temp_xml_filename, phase_names)
mix = ct.Mixture(phases_copy)
pred = []
for row in in_moles.values:
mix.species_moles = row
mix.equilibrate('TP', log_level=0)
re_org = mix.species_moles[mix.species_index(
org_ind, complex_name)]
re_aq = mix.species_moles[mix.species_index(
aq_ind, rare_earth_ion_name)]
pred.append(np.log10(re_org / re_aq))
pred = np.array(pred)
meas = np.log10(exp_df['D(m)'].values)
obj = np.sum((pred - meas) ** 2)
return obj
def fit(self, kwargs) -> float:
"""Fits experimental to modeled data by estimating complex reference enthalpy
Returns estimated complex enthalpy in J/mol
:param kwargs: (dict) parameters and options for scipy.minimize
"""
opt_dict = copy.deepcopy(self._opt_dict)
# x_guess = []
i = 0
for species_name in opt_dict.keys():
for _ in opt_dict[species_name].keys():
# x_guess.append(opt_dict[species_name][thermo_prop])
i += 1
x_guess = np.ones(i)
res = minimize(self.objective, x_guess, **kwargs)
i = 0
for species_name in opt_dict.keys():
for thermo_prop in opt_dict[species_name].keys():
opt_dict[species_name][thermo_prop] *= res.x[i]
i += 1
return opt_dict
def update_xml(self,
info_dict,
phases_xml_filename=None):
"""updates xml file with info_dict
:param info_dict: (dict) info in {species_names:{thermo_prop:val}}
:param phases_xml_filename: (str) xml filename if editing other xml
"""
if phases_xml_filename is None:
phases_xml_filename = self._phases_xml_filename
tree = ET.parse(phases_xml_filename)
root = tree.getroot()
# Update xml file
for species_name in info_dict.keys():
for thermo_prop in info_dict[species_name].keys():
for species in root.iter('species'):
if species.attrib['name'] == species_name:
for changed_prop in species.iter(thermo_prop):
changed_prop.text = str(
info_dict[species_name][thermo_prop])
now = datetime.now()
changed_prop.set('updated',
'Updated at {0}:{1} {2}-{3}-{4}'
.format(now.hour, now.minute,
now.month, now.day,
now.year))
tree.write(phases_xml_filename)
def parity_plot(self):
"""Parity plot between measured and predicted rare earth composition"""
phases_copy = self._phases.copy()
mix = ct.Mixture(phases_copy)
aq_ind = self._aq_ind
exp_df = self._exp_df
in_moles = self._in_moles
rare_earth_ion_name = self._rare_earth_ion_name
pred = []
for row in in_moles.values:
mix.species_moles = row
mix.equilibrate('TP', log_level=0)
re_aq = mix.species_moles[mix.species_index(
aq_ind, rare_earth_ion_name)]
pred.append(re_aq)
pred = np.array(pred)
meas = exp_df['REeq(m)'].values
min_data = np.min([pred, meas])
max_data = np.max([pred, meas])
min_max_data = np.array([min_data, max_data])
fig, ax = plt.subplots()
sns.scatterplot(meas, pred, color="r")
sns.lineplot(min_max_data, min_max_data, color="b")
ax.set(xlabel='Measured X equilibrium', ylabel='Predicted X equilibrium')
plt.show()
return None