mirror of https://github.com/ANL-CEEESA/LLEPE
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
54 lines
1.5 KiB
54 lines
1.5 KiB
import json
|
|
import numpy as np
|
|
import pyswarms as ps
|
|
import sys
|
|
sys.path.append('../')
|
|
from reeps import REEPS1
|
|
|
|
with open('multi_ree_settings.txt') as file:
|
|
testing_params = json.load(file)
|
|
|
|
beaker = REEPS1(**testing_params)
|
|
|
|
|
|
# def new_obj(predicted_dict, meas_df, epsilon):
|
|
# meas_cols = list(meas_df)
|
|
# pred_keys = list(predicted_dict.keys())
|
|
# meas = meas_df[meas_cols[2]]
|
|
# pred = (predicted_dict['re_org'] + epsilon) / (predicted_dict['re_aq'] + epsilon)
|
|
# log_pred = np.log10(pred)
|
|
# log_meas = np.log10(meas)
|
|
# obj = np.sum((log_pred - log_meas) ** 2)
|
|
# return obj
|
|
# #
|
|
# #
|
|
# # def new_obj(ping):
|
|
# # print(ping)
|
|
# beaker.set_objective_function(new_obj)
|
|
# objective_kwargs = {"epsilon": 1e-14}
|
|
# beaker.set
|
|
# noinspection PyUnusedLocal
|
|
def optimizer(func, x_guess):
|
|
lb = np.array([1e-1])
|
|
ub = np.array([1e1])
|
|
bounds = (lb, ub)
|
|
options = {'c1': 1e-3, 'c2': 1e-3, 'w': 0.9}
|
|
mini_optimizer = ps.single.global_best.GlobalBestPSO(n_particles=100, dimensions=1,
|
|
options=options, bounds=bounds)
|
|
f_opt, x_opt = mini_optimizer.optimize(func, iters=100)
|
|
|
|
return x_opt
|
|
|
|
|
|
minimizer_kwargs = {"method": 'SLSQP',
|
|
"bounds": [(1e-1, 1e1)],
|
|
"constraints": (),
|
|
"options": {'disp': True, 'maxiter': 1000, 'ftol': 1e-6}}
|
|
# est_enthalpy = beaker.fit(optimizer=optimizer)
|
|
est_enthalpy = beaker.fit()
|
|
print(est_enthalpy)
|
|
|
|
# beaker.update_xml(est_enthalpy)
|
|
# beaker.parity_plot()
|
|
# print(beaker.r_squared())
|