mirror of https://github.com/ANL-CEEESA/LLEPE
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
8.7 KiB
195 lines
8.7 KiB
from scipy.optimize import curve_fit
|
|
import llepe
|
|
import pandas as pd
|
|
import numpy as np
|
|
import json
|
|
|
|
|
|
def linear(x, a, b):
|
|
return a * x + b
|
|
|
|
|
|
species_list = 'Nd,Pr,Ce,La,Dy,Sm,Y'.split(',')
|
|
pitzer_param_list = ['beta0', 'beta1', 'Cphi']
|
|
meas_pitzer_param_df = pd.read_csv("../../data/csvs/may_pitzer_params.csv")
|
|
labeled_data = pd.read_csv("../../data/csvs/"
|
|
"zeroes_removed_PC88A_HCL_NdPrCeLaDySmY.csv")
|
|
exp_data = labeled_data.drop(labeled_data.columns[0], axis=1)
|
|
xml_file = "../../data/xmls/PC88A_HCL_NdPrCeLaDySmY_w_pitzer.xml"
|
|
eps = 1e-4
|
|
mini_eps = 1e-8
|
|
x_guesses = [[-5178500.0, -1459500.0],
|
|
[-5178342.857142857, -1460300.0],
|
|
[-5178342.857142857, -1459500.0],
|
|
[-5178342.857142857, -1458300.0],
|
|
[-5178185.714285715, -1459900.0],
|
|
[-5178185.714285715, -1459500.0],
|
|
[-5178185.714285715, -1459100.0],
|
|
[-5178185.714285715, -1458300.0],
|
|
[-5178028.571428572, -1459900.0],
|
|
[-5178028.571428572, -1459100.0],
|
|
[-5178028.571428572, -1458300.0],
|
|
[-5177557.142857143, -1459900.0],
|
|
[-5177400.0, -1460300.0]]
|
|
pitzer_guess_df = meas_pitzer_param_df.copy()
|
|
ignore_list = []
|
|
optimizer = 'scipy_minimize'
|
|
output_dict = {'iter': [0],
|
|
'best_obj': [1e20],
|
|
'rel_diff': [1e20]}
|
|
for species in species_list:
|
|
output_dict['{0}_slope'.format(species)] = [1e20]
|
|
output_dict['{0}_intercept'.format(species)] = [1e20]
|
|
for pitzer_param in pitzer_param_list:
|
|
output_dict['{0}_{1}'.format(species, pitzer_param)] = [1e20]
|
|
i = 0
|
|
rel_diff = 1000
|
|
while rel_diff > 1e-4:
|
|
i += 1
|
|
best_obj = 1e20
|
|
output_dict['iter'].append(i)
|
|
for species in species_list:
|
|
lower_species = species.lower()
|
|
opt_values = {
|
|
'(HA)2(org)_h0': [],
|
|
'{0}(H(A)2)3(org)_h0'.format(species): [],
|
|
'beta0': [],
|
|
'beta1': [],
|
|
'Cphi': [],
|
|
'obj_value': [],
|
|
'guess': []}
|
|
for x_guess in x_guesses:
|
|
info_dict = {'(HA)2(org)_h0': {'upper_element_name': 'species',
|
|
'upper_attrib_name': 'name',
|
|
'upper_attrib_value': '(HA)2(org)',
|
|
'lower_element_name': 'h0',
|
|
'lower_attrib_name': None,
|
|
'lower_attrib_value': None,
|
|
'input_format': '{0}',
|
|
'input_value': x_guess[1]},
|
|
'{0}(H(A)2)3(org)_h0'.format(species): {
|
|
'upper_element_name': 'species',
|
|
'upper_attrib_name': 'name',
|
|
'upper_attrib_value': '{0}(H(A)2)3(org)'.format(
|
|
species),
|
|
'lower_element_name': 'h0',
|
|
'lower_attrib_name': None,
|
|
'lower_attrib_value': None,
|
|
'input_format': '{0}',
|
|
'input_value': x_guess[0]},
|
|
}
|
|
for pitzer_param in pitzer_param_list:
|
|
if '{0}_{1}'.format(species, pitzer_param) not in ignore_list:
|
|
pitzer_row = pitzer_guess_df[
|
|
pitzer_guess_df['species'] == species]
|
|
inner_dict = {'upper_element_name': 'binarySaltParameters',
|
|
'upper_attrib_name': 'cation',
|
|
'upper_attrib_value':
|
|
'{0}+++'.format(species),
|
|
'lower_element_name': pitzer_param,
|
|
'lower_attrib_name': None,
|
|
'lower_attrib_value': None,
|
|
'input_format': ' {0}, 0.0, 0.0, 0.0, 0.0 ',
|
|
'input_value':
|
|
pitzer_row[pitzer_param].values[0]
|
|
}
|
|
info_dict['{0}_{1}'.format(
|
|
species, pitzer_param)] = inner_dict
|
|
llepe_params = {
|
|
'exp_data': exp_data,
|
|
'phases_xml_filename': xml_file,
|
|
'opt_dict': info_dict,
|
|
'phase_names': ['HCl_electrolyte', 'PC88A_liquid'],
|
|
'aq_solvent_name': 'H2O(L)',
|
|
'extractant_name': '(HA)2(org)',
|
|
'diluant_name': 'dodecane',
|
|
'complex_names': ['{0}(H(A)2)3(org)'.format(species)],
|
|
'extracted_species_ion_names': ['{0}+++'.format(species)],
|
|
'aq_solvent_rho': 1000.0,
|
|
'extractant_rho': 960.0,
|
|
'diluant_rho': 750.0,
|
|
'objective_function': llepe.lmse_perturbed_obj,
|
|
'optimizer': optimizer
|
|
}
|
|
estimator = llepe.LLEPE(**llepe_params)
|
|
estimator.update_xml(llepe_params['opt_dict'])
|
|
obj_kwargs = {'species_list': [species], 'epsilon': 1e-100}
|
|
bounds = [(1e-1, 1e1)] * len(info_dict)
|
|
optimizer_kwargs = {"method": 'l-bfgs-b',
|
|
"bounds": bounds}
|
|
opt_dict, obj_value = estimator.fit(
|
|
objective_kwargs=obj_kwargs,
|
|
optimizer_kwargs=optimizer_kwargs)
|
|
if obj_value < best_obj:
|
|
best_obj = obj_value
|
|
keys = list(opt_dict.keys())
|
|
info1 = [opt_dict[key]['input_value'] for key in keys]
|
|
info1.append(obj_value)
|
|
info1.append(x_guess)
|
|
opt_values_keys = opt_values.keys()
|
|
for ind, key in enumerate(opt_values_keys):
|
|
opt_values[key].append(info1[ind])
|
|
opt_value_df = pd.DataFrame(opt_values)
|
|
p_opt, p_cov = curve_fit(linear,
|
|
opt_value_df['(HA)2(org)_h0'].values,
|
|
opt_value_df['{0}(H(A)2)3(org)_h0'.format(
|
|
species)].values)
|
|
slope, intercept = p_opt
|
|
output_dict['{0}_slope'.format(species)].append(slope)
|
|
output_dict['{0}_intercept'.format(species)].append(intercept)
|
|
min_h0_df = opt_value_df[
|
|
opt_value_df['(HA)2(org)_h0']
|
|
== opt_value_df['(HA)2(org)_h0'].min()]
|
|
update_pitzer_dict = {}
|
|
for pitzer_param in pitzer_param_list:
|
|
key_name = '{0}_{1}'.format(species, pitzer_param)
|
|
output_dict[key_name].append(min_h0_df[pitzer_param].values[0])
|
|
|
|
inner_dict = {'upper_element_name': 'binarySaltParameters',
|
|
'upper_attrib_name': 'cation',
|
|
'upper_attrib_value':
|
|
'{0}+++'.format(species),
|
|
'lower_element_name': pitzer_param,
|
|
'lower_attrib_name': None,
|
|
'lower_attrib_value': None,
|
|
'input_format': ' {0}, 0.0, 0.0, 0.0, 0.0 ',
|
|
'input_value':
|
|
min_h0_df[pitzer_param].values[0]
|
|
}
|
|
update_pitzer_dict['{0}_{1}'.format(
|
|
species, pitzer_param)] = inner_dict
|
|
estimator.update_xml(update_pitzer_dict)
|
|
|
|
pitzer_guess_dict = {'species': [],
|
|
'beta0': [],
|
|
'beta1': [],
|
|
'Cphi': []}
|
|
for species in species_list:
|
|
pitzer_guess_dict['species'].append(species)
|
|
for pitzer_param in pitzer_param_list:
|
|
value_list = output_dict['{0}_{1}'.format(species, pitzer_param)]
|
|
value = value_list[-1]
|
|
pitzer_guess_dict[pitzer_param].append(value)
|
|
if i > 2:
|
|
mini_rel_diff1 = np.abs(value_list[-1]
|
|
- value_list[-2])/(
|
|
np.abs(value_list[-2]))
|
|
mini_rel_diff2 = np.abs(value_list[-2] - value_list[-3]) / (
|
|
np.abs(value_list[-3]))
|
|
if mini_rel_diff1 < mini_eps and mini_rel_diff2 < mini_eps:
|
|
ignore_list.append('{0}_{1}'.format(species, pitzer_param))
|
|
pitzer_guess_df = pd.DataFrame(pitzer_guess_dict)
|
|
|
|
output_dict['best_obj'].append(best_obj)
|
|
output_df = pd.DataFrame(output_dict)
|
|
old_row = output_df.iloc[-2, :].values[3:]
|
|
new_row = output_df.iloc[-1, :].values[3:]
|
|
rel_diff = np.sum(np.abs(new_row - old_row)/np.abs(old_row))
|
|
output_dict['rel_diff'].append(rel_diff)
|
|
output_df = pd.DataFrame(output_dict)
|
|
output_df.to_csv('outputs/iterative_fitter_output_df.csv')
|
|
|
|
|
|
|
|
|