mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 08:28:52 -06:00
Update README.md
This commit is contained in:
126
README.md
126
README.md
@@ -36,23 +36,149 @@ If you find any issues installing the package, please do not hesitate to [open a
|
|||||||
|
|
||||||
### 1.2 Describing instances
|
### 1.2 Describing instances
|
||||||
|
|
||||||
|
```julia
|
||||||
|
using JuMP
|
||||||
|
using MIPLearn
|
||||||
|
|
||||||
|
# Create problem data
|
||||||
|
weights = [1.0, 2.0, 3.0]
|
||||||
|
prices = [5.0, 6.0, 7.0]
|
||||||
|
capacity = 3.0
|
||||||
|
|
||||||
|
# Create standard JuMP model
|
||||||
|
model = Model()
|
||||||
|
n = length(weights)
|
||||||
|
@variable(model, x[1:n], Bin)
|
||||||
|
@objective(model, Max, sum(x[i] * prices[i] for i in 1:n))
|
||||||
|
@constraint(model, c1, sum(x[i] * weights[i] for i in 1:n) <= capacity)
|
||||||
|
|
||||||
|
# Add ML information
|
||||||
|
@feature(model, [5.0])
|
||||||
|
@feature(c1, [1.0, 2.0, 3.0])
|
||||||
|
@category(c1, "c1")
|
||||||
|
for i in 1:n
|
||||||
|
@feature(x[i], [weights[i]; prices[i]])
|
||||||
|
@category(x[i], "type-$i")
|
||||||
|
end
|
||||||
|
|
||||||
|
instance = JuMPInstance(model)
|
||||||
|
```
|
||||||
|
|
||||||
### 1.3 Solving instances and training
|
### 1.3 Solving instances and training
|
||||||
|
|
||||||
|
|
||||||
|
```julia
|
||||||
|
using MIPLearn
|
||||||
|
using Cbc
|
||||||
|
|
||||||
|
# Create training and test instances
|
||||||
|
training_instances = [...]
|
||||||
|
test_instances = [...]
|
||||||
|
|
||||||
|
# Create solver
|
||||||
|
solver = LearningSolver(Cbc.Optimizer)
|
||||||
|
|
||||||
|
# Solve training instances
|
||||||
|
for instance in train_instances
|
||||||
|
solve!(solver, instance)
|
||||||
|
end
|
||||||
|
|
||||||
|
# Train ML models
|
||||||
|
fit!(solver, training_instances)
|
||||||
|
|
||||||
|
# Solve test instances
|
||||||
|
for instance in test_instances
|
||||||
|
solve!(solver, instance)
|
||||||
|
end
|
||||||
|
```
|
||||||
|
|
||||||
### 1.4 Saving and loading solver state
|
### 1.4 Saving and loading solver state
|
||||||
|
```julia
|
||||||
|
using MIPLearn
|
||||||
|
using Cbc
|
||||||
|
|
||||||
|
# Solve training instances
|
||||||
|
training_instances = [...]
|
||||||
|
solver = LearningSolver(Cbc.Optimizer)
|
||||||
|
for instance in training_instances
|
||||||
|
solve!(solver, instance)
|
||||||
|
end
|
||||||
|
|
||||||
|
# Train ML models
|
||||||
|
fit!(solver, training_instances)
|
||||||
|
|
||||||
|
# Save trained solver to disk
|
||||||
|
save!(solver, "solver.bin")
|
||||||
|
|
||||||
|
# Application restarts...
|
||||||
|
|
||||||
|
# Load trained solver from disk
|
||||||
|
solver = LearningSolver(Cbc.Optimizer)
|
||||||
|
load!(solver, "solver.bin")
|
||||||
|
|
||||||
|
# Solve additional instances
|
||||||
|
test_instances = [...]
|
||||||
|
for instance in test_instances
|
||||||
|
solve!(solver, instance)
|
||||||
|
end
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
### 1.5 Solving training instances in parallel
|
### 1.5 Solving training instances in parallel
|
||||||
|
```julia
|
||||||
|
using MIPLearn
|
||||||
|
using Cbc
|
||||||
|
|
||||||
|
# Solve training instances in parallel
|
||||||
|
training_instances = [...]
|
||||||
|
solver = LearningSolver(Cbc.Optimizer)
|
||||||
|
parallel_solve!(solver, training_instances, n_jobs=4)
|
||||||
|
fit!(solver, training_instances)
|
||||||
|
|
||||||
|
# Solve test instances in parallel
|
||||||
|
test_instances = [...]
|
||||||
|
parallel_solve!(solver, test_instances)
|
||||||
|
```
|
||||||
|
|
||||||
## 2. Customization
|
## 2. Customization
|
||||||
|
|
||||||
### 2.1 Selecting solver components
|
### 2.1 Selecting solver components
|
||||||
|
|
||||||
|
```julia
|
||||||
|
using MIPLearn
|
||||||
|
|
||||||
|
solver = LearningSolver(
|
||||||
|
Cbc.Optimizer,
|
||||||
|
components=[
|
||||||
|
PrimalSolutionComponent(...),
|
||||||
|
ObjectiveValueComponent(...),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
### 2.2 Adjusting component aggresiveness
|
### 2.2 Adjusting component aggresiveness
|
||||||
|
|
||||||
|
```julia
|
||||||
|
using MIPLearn
|
||||||
|
|
||||||
|
solver = LearningSolver(
|
||||||
|
Cbc.Optimizer,
|
||||||
|
components=[
|
||||||
|
PrimalSolutionComponent(
|
||||||
|
threshold=MinPrecisionThreshold(0.95),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
### 2.3 Evaluating component performance
|
### 2.3 Evaluating component performance
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
### 2.4 Using customized ML classifiers and regressors
|
### 2.4 Using customized ML classifiers and regressors
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
## 3. Acknowledgments
|
## 3. Acknowledgments
|
||||||
* Based upon work supported by **Laboratory Directed Research and Development** (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.
|
* Based upon work supported by **Laboratory Directed Research and Development** (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.
|
||||||
* Based upon work supported by the **U.S. Department of Energy Advanced Grid Modeling Program** under Grant DE-OE0000875.
|
* Based upon work supported by the **U.S. Department of Energy Advanced Grid Modeling Program** under Grant DE-OE0000875.
|
||||||
|
|||||||
Reference in New Issue
Block a user