mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 00:18:51 -06:00
Make compatible with MIPLearn 5b3a56f0; reformat source code
This commit is contained in:
8
test/fixtures/knapsack.jl
vendored
8
test/fixtures/knapsack.jl
vendored
@@ -15,14 +15,14 @@ function build_knapsack_model()
|
||||
|
||||
n = length(weights)
|
||||
@variable(model, x[1:n], Bin)
|
||||
@objective(model, Max, sum(x[i] * prices[i] for i in 1:n))
|
||||
@constraint(model, c1, sum(x[i] * weights[i] for i in 1:n) <= capacity)
|
||||
@objective(model, Max, sum(x[i] * prices[i] for i = 1:n))
|
||||
@constraint(model, c1, sum(x[i] * weights[i] for i = 1:n) <= capacity)
|
||||
|
||||
# Add ML information to the model
|
||||
@feature(model, [5.0])
|
||||
@feature(c1, [1.0, 2.0, 3.0])
|
||||
@category(c1, "c1")
|
||||
for i in 1:n
|
||||
for i = 1:n
|
||||
@feature(x[i], [weights[i]; prices[i]])
|
||||
@category(x[i], "type-$i")
|
||||
end
|
||||
@@ -36,7 +36,7 @@ function build_knapsack_model()
|
||||
@test model.ext[:miplearn]["variable_categories"]["x[3]"] == "type-3"
|
||||
@test model.ext[:miplearn]["constraint_features"]["c1"] == [1.0, 2.0, 3.0]
|
||||
@test model.ext[:miplearn]["constraint_categories"]["c1"] == "c1"
|
||||
@test model.ext[:miplearn]["instance_features"] == [5.0]
|
||||
@test model.ext[:miplearn]["instance_features"] == [5.0]
|
||||
|
||||
return model
|
||||
end
|
||||
|
||||
@@ -23,6 +23,6 @@ using Cbc
|
||||
solver = LearningSolver(Cbc.Optimizer)
|
||||
solve!(solver, file_instance)
|
||||
|
||||
@test length(h5.get_vector("mip_var_values")) == 3
|
||||
end
|
||||
@test length(h5.get_array("mip_var_values")) == 3
|
||||
end
|
||||
end
|
||||
|
||||
@@ -39,7 +39,7 @@ using MIPLearn
|
||||
@testset "Discard output" begin
|
||||
instance = build_knapsack_file_instance()
|
||||
solver = LearningSolver(Cbc.Optimizer)
|
||||
solve!(solver, instance, discard_output=true)
|
||||
solve!(solver, instance, discard_output = true)
|
||||
loaded = load_instance(instance.filename)
|
||||
@test length(loaded.samples) == 0
|
||||
end
|
||||
|
||||
@@ -9,38 +9,24 @@ using DataFrames
|
||||
|
||||
@testset "BenchmarkRunner" begin
|
||||
@info "Building training data..."
|
||||
instances = [
|
||||
build_knapsack_file_instance(),
|
||||
build_knapsack_file_instance(),
|
||||
]
|
||||
stats = parallel_solve!(
|
||||
LearningSolver(Cbc.Optimizer),
|
||||
instances,
|
||||
)
|
||||
instances = [build_knapsack_file_instance(), build_knapsack_file_instance()]
|
||||
stats = parallel_solve!(LearningSolver(Cbc.Optimizer), instances)
|
||||
@test length(stats) == 2
|
||||
@test stats[1] !== nothing
|
||||
@test stats[2] !== nothing
|
||||
|
||||
benchmark = BenchmarkRunner(
|
||||
solvers=Dict(
|
||||
"baseline" => LearningSolver(
|
||||
Cbc.Optimizer,
|
||||
components=[],
|
||||
),
|
||||
"ml-exact" => LearningSolver(
|
||||
Cbc.Optimizer,
|
||||
),
|
||||
"ml-heur" => LearningSolver(
|
||||
Cbc.Optimizer,
|
||||
mode="heuristic",
|
||||
),
|
||||
solvers = Dict(
|
||||
"baseline" => LearningSolver(Cbc.Optimizer, components = []),
|
||||
"ml-exact" => LearningSolver(Cbc.Optimizer),
|
||||
"ml-heur" => LearningSolver(Cbc.Optimizer, mode = "heuristic"),
|
||||
),
|
||||
)
|
||||
@info "Fitting..."
|
||||
fit!(benchmark, instances)
|
||||
|
||||
@info "Benchmarking..."
|
||||
parallel_solve!(benchmark, instances, n_trials=2)
|
||||
parallel_solve!(benchmark, instances, n_trials = 2)
|
||||
|
||||
csv_filename = tempname()
|
||||
write_csv!(benchmark, csv_filename)
|
||||
|
||||
Reference in New Issue
Block a user