Allow module to be precompiled

This commit is contained in:
2021-06-17 12:41:48 -05:00
parent 062ccf8b39
commit 529e6289ec
4 changed files with 235 additions and 212 deletions

View File

@@ -467,144 +467,147 @@ function get_constraints(
end
@pydef mutable struct JuMPSolver <: miplearn.solvers.internal.InternalSolver
function __init__(self, optimizer_factory)
self.data = JuMPSolverData(
optimizer_factory,
Dict(), # varname_to_var
Dict(), # cname_to_constr
nothing, # instance
nothing, # model
[], # bin_vars
Dict(), # solution
[], # reduced_costs
Dict(), # dual_values
)
end
function add_constraints(self, cf)
lhs = cf.lhs
if lhs isa Matrix
# Undo incorrect automatic conversion performed by PyCall
lhs = [col[:] for col in eachcol(lhs)]
function __init_JuMPSolver__()
@pydef mutable struct Class <: miplearn.solvers.internal.InternalSolver
function __init__(self, optimizer_factory)
self.data = JuMPSolverData(
optimizer_factory,
Dict(), # varname_to_var
Dict(), # cname_to_constr
nothing, # instance
nothing, # model
[], # bin_vars
Dict(), # solution
[], # reduced_costs
Dict(), # dual_values
)
end
add_constraints(
self.data,
lhs=lhs,
rhs=cf.rhs,
senses=cf.senses,
names=cf.names,
)
end
function are_constraints_satisfied(self, cf; tol=1e-5)
lhs = cf.lhs
if lhs isa Matrix
# Undo incorrect automatic conversion performed by PyCall
lhs = [col[:] for col in eachcol(lhs)]
function add_constraints(self, cf)
lhs = cf.lhs
if lhs isa Matrix
# Undo incorrect automatic conversion performed by PyCall
lhs = [col[:] for col in eachcol(lhs)]
end
add_constraints(
self.data,
lhs=lhs,
rhs=cf.rhs,
senses=cf.senses,
names=cf.names,
)
end
return are_constraints_satisfied(
function are_constraints_satisfied(self, cf; tol=1e-5)
lhs = cf.lhs
if lhs isa Matrix
# Undo incorrect automatic conversion performed by PyCall
lhs = [col[:] for col in eachcol(lhs)]
end
return are_constraints_satisfied(
self.data,
lhs=lhs,
rhs=cf.rhs,
senses=cf.senses,
tol=tol,
)
end
build_test_instance_infeasible(self) =
build_test_instance_infeasible()
build_test_instance_knapsack(self) =
build_test_instance_knapsack()
clone(self) = JuMPSolver(self.data.optimizer_factory)
fix(self, solution) =
fix!(self.data, solution)
get_solution(self) =
isempty(self.data.solution) ? nothing : self.data.solution
get_constraints(
self;
with_static=true,
with_sa=true,
with_lhs=true,
) = get_constraints(
self.data,
lhs=lhs,
rhs=cf.rhs,
senses=cf.senses,
tol=tol,
with_static=with_static,
)
get_constraint_attrs(self) = [
# "basis_status",
"categories",
"dual_values",
"lazy",
"lhs",
"names",
"rhs",
# "sa_rhs_down",
# "sa_rhs_up",
"senses",
# "slacks",
"user_features",
]
get_variables(
self;
with_static=true,
with_sa=true,
) = get_variables(self.data; with_static=with_static)
get_variable_attrs(self) = [
"names",
# "basis_status",
"categories",
"lower_bounds",
"obj_coeffs",
"reduced_costs",
# "sa_lb_down",
# "sa_lb_up",
# "sa_obj_down",
# "sa_obj_up",
# "sa_ub_down",
# "sa_ub_up",
"types",
"upper_bounds",
"user_features",
"values",
]
is_infeasible(self) =
is_infeasible(self.data)
remove_constraints(self, names) =
remove_constraints(
self.data,
[n for n in names],
)
set_instance(self, instance, model=nothing) =
set_instance!(self.data, instance, model=model)
set_warm_start(self, solution) =
set_warm_start!(self.data, solution)
solve(
self;
tee=false,
iteration_cb=nothing,
lazy_cb=nothing,
user_cut_cb=nothing,
) = solve(
self.data,
tee=tee,
iteration_cb=iteration_cb,
)
solve_lp(self; tee=false) =
solve_lp(self.data, tee=tee)
end
build_test_instance_infeasible(self) =
build_test_instance_infeasible()
build_test_instance_knapsack(self) =
build_test_instance_knapsack()
clone(self) = JuMPSolver(self.data.optimizer_factory)
fix(self, solution) =
fix!(self.data, solution)
get_solution(self) =
isempty(self.data.solution) ? nothing : self.data.solution
get_constraints(
self;
with_static=true,
with_sa=true,
with_lhs=true,
) = get_constraints(
self.data,
with_static=with_static,
)
get_constraint_attrs(self) = [
# "basis_status",
"categories",
"dual_values",
"lazy",
"lhs",
"names",
"rhs",
# "sa_rhs_down",
# "sa_rhs_up",
"senses",
# "slacks",
"user_features",
]
get_variables(
self;
with_static=true,
with_sa=true,
) = get_variables(self.data; with_static=with_static)
get_variable_attrs(self) = [
"names",
# "basis_status",
"categories",
"lower_bounds",
"obj_coeffs",
"reduced_costs",
# "sa_lb_down",
# "sa_lb_up",
# "sa_obj_down",
# "sa_obj_up",
# "sa_ub_down",
# "sa_ub_up",
"types",
"upper_bounds",
"user_features",
"values",
]
is_infeasible(self) =
is_infeasible(self.data)
remove_constraints(self, names) =
remove_constraints(
self.data,
[n for n in names],
)
set_instance(self, instance, model=nothing) =
set_instance!(self.data, instance, model=model)
set_warm_start(self, solution) =
set_warm_start!(self.data, solution)
solve(
self;
tee=false,
iteration_cb=nothing,
lazy_cb=nothing,
user_cut_cb=nothing,
) = solve(
self.data,
tee=tee,
iteration_cb=iteration_cb,
)
solve_lp(self; tee=false) =
solve_lp(self.data, tee=tee)
copy!(JuMPSolver, Class)
end