Start implementing JumpSolver

master
Alinson S. Xavier 3 years ago
parent 64101c495c
commit 5bc909d62f
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

@ -7,6 +7,7 @@ version = "0.3.0"
CPLEX = "a076750e-1247-5638-91d2-ce28b192dca0"
Conda = "8f4d0f93-b110-5947-807f-2305c1781a2d"
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"

2
deps/build.jl vendored

@ -5,7 +5,7 @@ function install_miplearn()
Conda.update()
pip = joinpath(dirname(pyimport("sys").executable), "pip")
isfile(pip) || error("$pip: invalid path")
run(`$pip install miplearn==0.2.0.dev13`)
run(`$pip install miplearn==0.3.0.dev0`)
end
install_miplearn()

@ -4,7 +4,6 @@
using CPLEX
using JuMP
using HDF5
Base.@kwdef struct CplexBlackBoxCuts
threads::Int = 1
@ -26,10 +25,7 @@ function _add_mip_start!(env, lp, x::Vector{Float32})
rval == 0 || error("CPXaddmipstarts failed: $rval")
end
function collect(
mps_filename::String,
method::CplexBlackBoxCuts,
)::Nothing
function collect(mps_filename::String, method::CplexBlackBoxCuts)::Nothing
tempdir = mktempdir()
isfile(mps_filename) || error("file not found: $mps_filename")
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
@ -47,8 +43,8 @@ function collect(
CPXsetintparam(env, CPX_PARAM_PREDUAL, -1)
CPXsetintparam(env, CPX_PARAM_PRESLVND, -1)
# Parameter: Enable logging
CPXsetintparam(env, CPX_PARAM_SCRIND, 1)
# Parameter: Disable logging
CPXsetintparam(env, CPX_PARAM_SCRIND, 0)
# Parameter: Stop processing at the root node
CPXsetintparam(env, CPX_PARAM_NODELIM, 0)
@ -68,7 +64,7 @@ function collect(
CPXreadcopyprob(env, lp, mps_filename, "mps")
# Load warm start
h5 = Hdf5Sample(h5_filename)
h5 = H5File(h5_filename)
var_values = h5.get_array("mip_var_values")
h5.file.close()
_add_mip_start!(env, lp, var_values)
@ -80,13 +76,17 @@ function collect(
CPXwriteprob(env, nodelp_p[1], "$tempdir/root.mps", C_NULL)
return 0
end
c_solve_callback = @cfunction($solve_callback, Cint, (
CPXENVptr, # env
Ptr{Cvoid}, # cbdata
Cint, # wherefrom
Ptr{Cvoid}, # cbhandle
Ptr{Cint}, # useraction_p
))
c_solve_callback = @cfunction(
$solve_callback,
Cint,
(
CPXENVptr, # env
Ptr{Cvoid}, # cbdata
Cint, # wherefrom
Ptr{Cvoid}, # cbhandle
Ptr{Cint}, # useraction_p
)
)
CPXsetsolvecallbackfunc(env, c_solve_callback, C_NULL)
# Run optimization
@ -96,18 +96,20 @@ function collect(
model = JuMP.read_from_file("$tempdir/root.mps")
function select(cr)
return name(cr)[begin] in ['i', 'f', 'm', 'r', 'L', 'z', 'v'] && isdigit(name(cr)[begin+1])
return name(cr)[begin] in ['i', 'f', 'm', 'r', 'L', 'z', 'v'] &&
isdigit(name(cr)[begin+1])
end
# Parse cuts
constraints = all_constraints(model, GenericAffExpr{Float64,VariableRef}, MOI.LessThan{Float64})
constraints =
all_constraints(model, GenericAffExpr{Float64,VariableRef}, MOI.LessThan{Float64})
nvars = num_variables(model)
ncuts = length([cr for cr in constraints if select(cr)])
cuts_lhs = spzeros(ncuts, nvars)
cuts_rhs = Float64[]
cuts_var_names = String[]
for i in 1:nvars
for i = 1:nvars
push!(cuts_var_names, name(VariableRef(model, MOI.VariableIndex(i))))
end
@ -121,20 +123,18 @@ function collect(
if (idx < 1 || idx > nvars)
error("invalid index: $idx")
end
cuts_lhs[offset, idx - 1] = val
cuts_lhs[offset, idx-1] = val
end
push!(cuts_rhs, cset.upper)
offset += 1
end
end
@info "Storing $(length(cuts_rhs)) CPLEX cuts..."
h5 = Hdf5Sample(h5_filename)
h5 = H5File(h5_filename)
h5.put_sparse("cuts_cpx_lhs", cuts_lhs)
h5.put_array("cuts_cpx_rhs", cuts_rhs)
h5.put_array("cuts_cpx_var_names", to_str_array(cuts_var_names))
h5.file.close()
h5.close()
return
end

@ -7,44 +7,15 @@ module MIPLearn
using PyCall
using SparseArrays
global miplearn = PyNULL()
global Hdf5Sample = PyNULL()
to_str_array(values) = py"to_str_array"(values)
from_str_array(values) = py"from_str_array"(values)
include("problems/setcover.jl")
include("io.jl")
include("solvers/jump.jl")
include("Cuts/BlackBox/cplex.jl")
function __init__()
copy!(miplearn, pyimport("miplearn"))
copy!(Hdf5Sample, miplearn.features.sample.Hdf5Sample)
py"""
import numpy as np
def to_str_array(values):
if values is None:
return None
return np.array(values, dtype="S")
def from_str_array(values):
return [v.decode() for v in values]
"""
__init_problems_setcover__()
__init_io__()
__init_solvers_jump__()
end
function convert(::Type{SparseMatrixCSC}, o::PyObject)
I, J, V = pyimport("scipy.sparse").find(o)
return sparse(I .+ 1, J .+ 1, V, o.shape...)
end
function PyObject(m::SparseMatrixCSC)
pyimport("scipy.sparse").csc_matrix(
(m.nzval, m.rowval .- 1, m.colptr .- 1),
shape = size(m),
).tocoo()
end
include("Cuts/BlackBox/cplex.jl")
export Hdf5Sample
end # module

@ -0,0 +1,35 @@
global H5File = PyNULL()
to_str_array(values) = py"to_str_array"(values)
from_str_array(values) = py"from_str_array"(values)
function __init_io__()
copy!(H5File, pyimport("miplearn.h5").H5File)
py"""
import numpy as np
def to_str_array(values):
if values is None:
return None
return np.array(values, dtype="S")
def from_str_array(values):
return [v.decode() for v in values]
"""
end
function convert(::Type{SparseMatrixCSC}, o::PyObject)
I, J, V = pyimport("scipy.sparse").find(o)
return sparse(I .+ 1, J .+ 1, V, o.shape...)
end
function PyObject(m::SparseMatrixCSC)
pyimport("scipy.sparse").csc_matrix(
(m.nzval, m.rowval .- 1, m.colptr .- 1),
shape = size(m),
).tocoo()
end
export H5File

@ -0,0 +1,28 @@
global SetCoverData = PyNULL()
global SetCoverGenerator = PyNULL()
using JuMP
using HiGHS
function __init_problems_setcover__()
copy!(SetCoverData, pyimport("miplearn.problems.setcover").SetCoverData)
copy!(SetCoverGenerator, pyimport("miplearn.problems.setcover").SetCoverGenerator)
end
function build_setcover_model(data; optimizer = HiGHS.Optimizer)
model = Model(optimizer)
set_silent(model)
n_elements, n_sets = size(data.incidence_matrix)
E = 0:n_elements-1
S = 0:n_sets-1
@variable(model, x[S], Bin)
@objective(model, Min, sum(data.costs .* x))
@constraint(
model,
eqs[e in E],
sum(data.incidence_matrix[e+1, s+1] * x[s] for s in S) >= 1
)
return JumpModel(model)
end
export SetCoverData, SetCoverGenerator, build_setcover_model

@ -0,0 +1,290 @@
using JuMP
using HiGHS
global JumpModel = PyNULL()
# -----------------------------------------------------------------------------
function _add_constrs(
model::JuMP.Model,
var_names,
constrs_lhs,
constrs_sense,
constrs_rhs,
stats,
) end
function _extract_after_load(model::JuMP.Model, h5)
if JuMP.objective_sense(model) == MOI.MIN_SENSE
h5.put_scalar("static_sense", "min")
else
h5.put_scalar("static_sense", "max")
end
_extract_after_load_vars(model, h5)
_extract_after_load_constrs(model, h5)
end
function _extract_after_load_vars(model::JuMP.Model, h5)
vars = JuMP.all_variables(model)
lb = [
JuMP.is_binary(v) ? 0.0 : JuMP.has_lower_bound(v) ? JuMP.lower_bound(v) : -Inf
for v in vars
]
ub = [
JuMP.is_binary(v) ? 1.0 : JuMP.has_upper_bound(v) ? JuMP.upper_bound(v) : Inf
for v in vars
]
types = [JuMP.is_binary(v) ? "B" : JuMP.is_integer(v) ? "I" : "C" for v in vars]
obj = objective_function(model, AffExpr)
obj_coeffs = [v keys(obj.terms) ? obj.terms[v] : 0.0 for v in vars]
h5.put_array("static_var_names", to_str_array(JuMP.name.(vars)))
h5.put_array("static_var_types", to_str_array(types))
h5.put_array("static_var_lower_bounds", lb)
h5.put_array("static_var_upper_bounds", ub)
h5.put_array("static_var_obj_coeffs", obj_coeffs)
h5.put_scalar("static_obj_offset", obj.constant)
end
function _extract_after_load_constrs(model::JuMP.Model, h5)
names = String[]
senses, rhs = String[], Float64[]
lhs_rows, lhs_cols, lhs_values = Int[], Int[], Float64[]
constr_index = 1
for (ftype, stype) in JuMP.list_of_constraint_types(model)
for constr in JuMP.all_constraints(model, ftype, stype)
cset = MOI.get(constr.model.moi_backend, MOI.ConstraintSet(), constr.index)
cf = MOI.get(constr.model.moi_backend, MOI.ConstraintFunction(), constr.index)
name = JuMP.name(constr)
length(name) > 0 || continue
push!(names, name)
# LHS, RHS and sense
if ftype == VariableRef
# nop
elseif ftype == AffExpr
if stype == MOI.EqualTo{Float64}
rhs_c = cset.value
push!(senses, "=")
elseif stype == MOI.LessThan{Float64}
rhs_c = cset.upper
push!(senses, "<")
elseif stype == MOI.GreaterThan{Float64}
rhs_c = cset.lower
push!(senses, ">")
else
error("Unsupported set: $stype")
end
push!(rhs, rhs_c)
for term in cf.terms
push!(lhs_cols, term.variable.value)
push!(lhs_rows, constr_index)
push!(lhs_values, term.coefficient)
end
constr_index += 1
else
error("Unsupported constraint type: ($ftype, $stype)")
end
end
end
lhs = sparse(lhs_rows, lhs_cols, lhs_values, length(rhs), JuMP.num_variables(model))
h5.put_sparse("static_constr_lhs", lhs)
h5.put_array("static_constr_rhs", rhs)
h5.put_array("static_constr_sense", to_str_array(senses))
h5.put_array("static_constr_names", to_str_array(names))
end
function _extract_after_lp(model::JuMP.Model, h5)
h5.put_scalar("lp_wallclock_time", solve_time(model))
h5.put_scalar("lp_obj_value", objective_value(model))
_extract_after_lp_vars(model, h5)
_extract_after_lp_constrs(model, h5)
end
function _extract_after_lp_vars(model::JuMP.Model, h5)
# Values and reduced costs
vars = all_variables(model)
h5.put_array("lp_var_values", JuMP.value.(vars))
h5.put_array("lp_var_reduced_costs", reduced_cost.(vars))
# Basis status
basis_status = []
for var in vars
bstatus = MOI.get(model, MOI.VariableBasisStatus(), var)
if bstatus == MOI.BASIC
bstatus_v = "B"
elseif bstatus == MOI.NONBASIC_AT_LOWER
bstatus_v = "L"
elseif bstatus == MOI.NONBASIC_AT_UPPER
bstatus_v = "U"
else
error("Unknown basis status: $(bstatus)")
end
push!(basis_status, bstatus_v)
end
h5.put_array("lp_var_basis_status", to_str_array(basis_status))
# Sensitivity analysis
obj_coeffs = h5.get_array("static_var_obj_coeffs")
sensitivity_report = lp_sensitivity_report(model)
sa_obj_down, sa_obj_up = Float64[], Float64[]
sa_lb_down, sa_lb_up = Float64[], Float64[]
sa_ub_down, sa_ub_up = Float64[], Float64[]
for (i, v) in enumerate(vars)
# Objective function
(delta_down, delta_up) = sensitivity_report[v]
push!(sa_obj_down, delta_down + obj_coeffs[i])
push!(sa_obj_up, delta_up + obj_coeffs[i])
# Lower bound
if has_lower_bound(v)
constr = LowerBoundRef(v)
(delta_down, delta_up) = sensitivity_report[constr]
push!(sa_lb_down, lower_bound(v) + delta_down)
push!(sa_lb_up, lower_bound(v) + delta_up)
else
push!(sa_lb_down, -Inf)
push!(sa_lb_up, -Inf)
end
# Upper bound
if has_upper_bound(v)
constr = JuMP.UpperBoundRef(v)
(delta_down, delta_up) = sensitivity_report[constr]
push!(sa_ub_down, upper_bound(v) + delta_down)
push!(sa_ub_up, upper_bound(v) + delta_up)
else
push!(sa_ub_down, Inf)
push!(sa_ub_up, Inf)
end
end
h5.put_array("lp_var_sa_obj_up", sa_obj_up)
h5.put_array("lp_var_sa_obj_down", sa_obj_down)
h5.put_array("lp_var_sa_ub_up", sa_ub_up)
h5.put_array("lp_var_sa_ub_down", sa_ub_down)
h5.put_array("lp_var_sa_lb_up", sa_lb_up)
h5.put_array("lp_var_sa_lb_down", sa_lb_down)
end
function _extract_after_lp_constrs(model::JuMP.Model, h5)
# Slacks
lhs = h5.get_sparse("static_constr_lhs")
rhs = h5.get_array("static_constr_rhs")
x = h5.get_array("lp_var_values")
slacks = abs.(lhs * x - rhs)
h5.put_array("lp_constr_slacks", slacks)
sa_rhs_up, sa_rhs_down = Float64[], Float64[]
duals = Float64[]
basis_status = []
constr_idx = 1
sensitivity_report = lp_sensitivity_report(model)
for (ftype, stype) in JuMP.list_of_constraint_types(model)
for constr in JuMP.all_constraints(model, ftype, stype)
length(JuMP.name(constr)) > 0 || continue
# Duals
push!(duals, JuMP.dual(constr))
# Basis status
b = MOI.get(model, MOI.ConstraintBasisStatus(), constr)
if b == MOI.NONBASIC
push!(basis_status, "N")
elseif b == MOI.BASIC
push!(basis_status, "B")
else
error("Unknown basis status: $b")
end
# Sensitivity analysis
(delta_down, delta_up) = sensitivity_report[constr]
push!(sa_rhs_down, rhs[constr_idx] + delta_down)
push!(sa_rhs_up, rhs[constr_idx] + delta_up)
constr_idx += 1
end
end
h5.put_array("lp_constr_dual_values", duals)
h5.put_array("lp_constr_basis_status", to_str_array(basis_status))
h5.put_array("lp_constr_sa_rhs_up", sa_rhs_up)
h5.put_array("lp_constr_sa_rhs_down", sa_rhs_down)
end
function _extract_after_mip(model::JuMP.Model, h5)
h5.put_scalar("mip_obj_value", objective_value(model))
h5.put_scalar("mip_obj_bound", objective_bound(model))
h5.put_scalar("mip_wallclock_time", solve_time(model))
h5.put_scalar("mip_gap", relative_gap(model))
# Values
vars = all_variables(model)
x = JuMP.value.(vars)
h5.put_array("mip_var_values", x)
# Slacks
lhs = h5.get_sparse("static_constr_lhs")
rhs = h5.get_array("static_constr_rhs")
slacks = abs.(lhs * x - rhs)
h5.put_array("mip_constr_slacks", slacks)
end
function _fix_variables(model::JuMP.Model, var_names, var_values, stats) end
function _optimize(model::JuMP.Model)
optimize!(model)
end
function _relax(model::JuMP.Model)
relaxed, _ = copy_model(model)
relax_integrality(relaxed)
# FIXME: Remove hardcoded optimizer
set_optimizer(relaxed, HiGHS.Optimizer)
set_silent(relaxed)
return relaxed
end
function _set_warm_starts(model::JuMP.Model, var_names, var_values, stats) end
function _write(model::JuMP.Model, filename) end
# -----------------------------------------------------------------------------
function __init_solvers_jump__()
@pydef mutable struct Class
function __init__(self, inner)
self.inner = inner
end
add_constrs(self, var_names, constrs_lhs, constrs_sense, constrs_rhs, stats) =
_add_constrs(
self.inner,
var_names,
constrs_lhs,
constrs_sense,
constrs_rhs,
stats,
)
extract_after_load(self, h5) = _extract_after_load(self.inner, h5)
extract_after_lp(self, h5) = _extract_after_lp(self.inner, h5)
extract_after_mip(self, h5) = _extract_after_mip(self.inner, h5)
fix_variables(self, var_names, var_values, stats) =
_fix_variables(self.inner, var_names, var_values, stats)
optimize(self) = _optimize(self.inner)
relax(self) = Class(_relax(self.inner))
set_warm_starts(self, var_names, var_values, stats) =
_set_warm_starts(self.inner, var_names, var_values, stats)
write(self, filename) = _write(self.inner, filename)
end
copy!(JumpModel, Class)
end

@ -1,6 +1,14 @@
name = "MIPLearnT"
uuid = "92db8938-9c6a-4af6-8bcc-af424cd0e2d5"
authors = ["Alinson S. Xavier <git@axavier.org>"]
version = "0.1.0"
[deps]
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899"
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68"
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

Binary file not shown.

@ -1,13 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Revise
using Test
using MIPLearn
includet("Cuts/BlackBox/test_cplex.jl")
function runtests()
test_cuts_blackbox_cplex()
end

@ -7,14 +7,14 @@ using MIPLearn
function test_cuts_blackbox_cplex()
# Prepare filenames
mps_filename = joinpath(@__DIR__, "../../fixtures/bell5.mps.gz")
mps_filename = "$FIXTURES/bell5.mps.gz"
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
# Run collector
MIPLearn.collect(mps_filename, CplexBlackBoxCuts())
# Read HDF5 file
h5 = Hdf5Sample(h5_filename)
h5 = H5File(h5_filename)
rhs = h5.get_array("cuts_cpx_rhs")
h5.file.close()
@test length(rhs) > 0

@ -0,0 +1,34 @@
module MIPLearnT
using Test
using Logging
using JuliaFormatter
using HiGHS
BASEDIR = dirname(@__FILE__)
FIXTURES = "$BASEDIR/../fixtures"
include("Cuts/BlackBox/test_cplex.jl")
include("problems/test_setcover.jl")
include("test_h5.jl")
include("solvers/test_jump.jl")
function runtests()
@testset "MIPLearn" begin
test_cuts_blackbox_cplex()
test_h5()
test_problems_setcover()
test_solvers_jump()
end
end
function format()
JuliaFormatter.format(BASEDIR, verbose = true)
JuliaFormatter.format("$BASEDIR/../../src", verbose = true)
return
end
export runtests, format
end # module MIPLearnT

@ -0,0 +1,56 @@
using PyCall
function test_problems_setcover()
test_problems_setcover_generator()
test_problems_setcover_model()
end
function test_problems_setcover_generator()
np = pyimport("numpy")
scipy_stats = pyimport("scipy.stats")
randint = scipy_stats.randint
uniform = scipy_stats.uniform
np.random.seed(42)
gen = SetCoverGenerator(
n_elements = randint(low = 3, high = 4),
n_sets = randint(low = 5, high = 6),
costs = uniform(loc = 0.0, scale = 100.0),
costs_jitter = uniform(loc = 0.95, scale = 0.10),
density = uniform(loc = 0.5, scale = 0),
K = uniform(loc = 25, scale = 0),
fix_sets = false,
)
data = gen.generate(2)
@test data[1].costs == [136.75, 86.17, 25.71, 27.31, 102.48]
@test data[1].incidence_matrix == [
1 0 1 0 1
1 1 0 0 0
1 0 0 1 1
]
@test data[2].costs == [63.54, 76.6, 48.09, 74.1, 93.33]
@test data[2].incidence_matrix == [
1 1 0 1 1
0 1 0 1 0
0 1 1 0 0
]
end
function test_problems_setcover_model()
data = SetCoverData(
costs = [5, 10, 12, 6, 8],
incidence_matrix = [
1 0 0 1 0
1 1 0 0 0
0 0 1 1 1
],
)
h5 = H5File(tempname(), "w")
model = build_setcover_model(data)
model.extract_after_load(h5)
model.optimize()
model.extract_after_mip(h5)
@test h5.get_scalar("mip_obj_value") == 11.0
h5.close()
end

@ -0,0 +1,98 @@
function build_model()
data = SetCoverData(
costs = [5, 10, 12, 6, 8],
incidence_matrix = [
1 0 0 1 0
1 1 0 0 0
0 0 1 1 1
],
)
return build_setcover_model(data)
end
function test_solvers_jump()
test_solvers_jump_extract()
end
function test_solvers_jump_extract()
h5 = H5File(tempname(), "w")
function test_scalar(key, expected)
actual = h5.get_scalar(key)
@test actual !== nothing
@test actual == expected
end
function test_sparse(key, expected)
actual = h5.get_sparse(key)
@test actual !== nothing
@test all(actual == expected)
end
function test_str_array(key, expected)
actual = MIPLearn.from_str_array(h5.get_array(key))
@debug actual, expected
@test actual !== nothing
@test all(actual .== expected)
end
function test_array(key, expected)
actual = h5.get_array(key)
@debug actual, expected
@test actual !== nothing
@test all(actual .≈ expected)
end
model = build_model()
model.extract_after_load(h5)
test_sparse(
"static_constr_lhs",
[
1 0 0 1 0
1 1 0 0 0
0 0 1 1 1
],
)
test_str_array("static_constr_names", ["eqs[0]", "eqs[1]", "eqs[2]"])
test_array("static_constr_rhs", [1, 1, 1])
test_str_array("static_constr_sense", [">", ">", ">"])
test_scalar("static_obj_offset", 0)
test_scalar("static_sense", "min")
test_array("static_var_lower_bounds", [0, 0, 0, 0, 0])
test_str_array("static_var_names", ["x[0]", "x[1]", "x[2]", "x[3]", "x[4]"])
test_array("static_var_obj_coeffs", [5, 10, 12, 6, 8])
test_str_array("static_var_types", ["B", "B", "B", "B", "B"])
test_array("static_var_upper_bounds", [1, 1, 1, 1, 1])
relaxed = model.relax()
relaxed.optimize()
relaxed.extract_after_lp(h5)
test_array("lp_constr_dual_values", [0, 10, 6])
test_array("lp_constr_slacks", [1, 0, 0])
test_scalar("lp_obj_value", 11)
test_array("lp_var_reduced_costs", [-5, 0, 6, 0, 2])
test_array("lp_var_values", [1, 0, 0, 1, 0])
test_str_array("lp_var_basis_status", ["U", "B", "L", "B", "L"])
test_str_array("lp_constr_basis_status", ["B","N","N"])
test_array("lp_constr_sa_rhs_up", [2, 2, 1])
test_array("lp_constr_sa_rhs_down", [-Inf, 1, 0])
test_array("lp_var_sa_obj_up", [10, Inf, Inf, 8, Inf])
test_array("lp_var_sa_obj_down", [-Inf, 5, 6, 0, 6])
test_array("lp_var_sa_ub_up", [1, Inf, Inf, Inf, Inf])
test_array("lp_var_sa_ub_down", [0, 0, 0, 1, 0])
test_array("lp_var_sa_lb_up", [1, 0, 1, 1, 1])
test_array("lp_var_sa_lb_down", [-Inf, -Inf, 0, -Inf, 0])
lp_wallclock_time = h5.get_scalar("lp_wallclock_time")
@test lp_wallclock_time >= 0
model.optimize()
model.extract_after_mip(h5)
test_array("mip_constr_slacks", [1, 0, 0])
test_array("mip_var_values", [1.0, 0.0, 0.0, 1.0, 0.0])
test_scalar("mip_gap", 0)
test_scalar("mip_obj_bound", 11.0)
test_scalar("mip_obj_value", 11.0)
mip_wallclock_time = h5.get_scalar("mip_wallclock_time")
@test mip_wallclock_time >= 0
end

@ -0,0 +1,37 @@
using MIPLearn
function test_h5()
h5 = H5File(tempname(), "w")
_test_roundtrip_scalar(h5, "A")
_test_roundtrip_scalar(h5, true)
_test_roundtrip_scalar(h5, 1)
_test_roundtrip_scalar(h5, 1.0)
@test h5.get_scalar("unknown-key") === nothing
_test_roundtrip_array(h5, [true, false])
_test_roundtrip_array(h5, [1, 2, 3])
_test_roundtrip_array(h5, [1.0, 2.0, 3.0])
_test_roundtrip_str_array(h5, ["A", "BB", "CCC"])
@test h5.get_array("unknown-key") === nothing
h5.close()
end
function _test_roundtrip_scalar(h5, original)
h5.put_scalar("key", original)
recovered = h5.get_scalar("key")
@test recovered !== nothing
@test original == recovered
end
function _test_roundtrip_array(h5, original)
h5.put_array("key", original)
recovered = h5.get_array("key")
@test recovered !== nothing
@test all(original .== recovered)
end
function _test_roundtrip_str_array(h5, original)
h5.put_array("key", MIPLearn.to_str_array(original))
recovered = MIPLearn.from_str_array(h5.get_array("key"))
@test recovered !== nothing
@test all(original .== recovered)
end
Loading…
Cancel
Save