|
|
|
@ -10,8 +10,6 @@ using Random
|
|
|
|
|
Branching strategy that selects a subset of fractional variables
|
|
|
|
|
as candidates (according to pseudocosts) the solves two linear
|
|
|
|
|
programming problems for each candidate.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
Base.@kwdef struct StrongBranching <: VariableBranchingRule
|
|
|
|
|
look_ahead::Int = 10
|
|
|
|
@ -22,85 +20,13 @@ Base.@kwdef struct StrongBranching <: VariableBranchingRule
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function find_branching_var(rule::StrongBranching, node::Node, pool::NodePool)::Variable
|
|
|
|
|
nfrac = length(node.fractional_variables)
|
|
|
|
|
pseudocost_scores = [
|
|
|
|
|
_pseudocost_score(
|
|
|
|
|
node,
|
|
|
|
|
pool,
|
|
|
|
|
node.fractional_variables[j],
|
|
|
|
|
node.fractional_values[j],
|
|
|
|
|
) for j = 1:nfrac
|
|
|
|
|
]
|
|
|
|
|
σ = sortperm(pseudocost_scores, rev = true)
|
|
|
|
|
sorted_vars = node.fractional_variables[σ]
|
|
|
|
|
_set_node_bounds(node)
|
|
|
|
|
no_improv_count, call_count = 0, 0
|
|
|
|
|
max_score, max_var = (-Inf, -Inf), sorted_vars[1]
|
|
|
|
|
for (i, var) in enumerate(sorted_vars)
|
|
|
|
|
call_count += 1
|
|
|
|
|
score = _strong_branch_score(
|
|
|
|
|
node = node,
|
|
|
|
|
pool = pool,
|
|
|
|
|
var = var,
|
|
|
|
|
x = node.fractional_values[σ[i]],
|
|
|
|
|
rb_rule = ReliabilityBranching(
|
|
|
|
|
min_samples=typemax(Int),
|
|
|
|
|
max_sb_calls=rule.max_calls,
|
|
|
|
|
look_ahead=rule.look_ahead,
|
|
|
|
|
side_effect=rule.side_effect,
|
|
|
|
|
max_iterations=rule.max_iterations,
|
|
|
|
|
aggregation=rule.aggregation,
|
|
|
|
|
)
|
|
|
|
|
# @show name(node.mip, var), round(score[1], digits=2)
|
|
|
|
|
if score > max_score
|
|
|
|
|
max_score, max_var = score, var
|
|
|
|
|
no_improv_count = 0
|
|
|
|
|
else
|
|
|
|
|
no_improv_count += 1
|
|
|
|
|
end
|
|
|
|
|
no_improv_count <= rule.look_ahead || break
|
|
|
|
|
call_count <= rule.max_calls || break
|
|
|
|
|
end
|
|
|
|
|
_unset_node_bounds(node)
|
|
|
|
|
return max_var
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
function _strong_branch_score(;
|
|
|
|
|
node::Node,
|
|
|
|
|
pool::NodePool,
|
|
|
|
|
var::Variable,
|
|
|
|
|
x::Float64,
|
|
|
|
|
side_effect::Bool,
|
|
|
|
|
max_iterations::Int,
|
|
|
|
|
aggregation::Symbol,
|
|
|
|
|
)::Tuple{Float64,Int}
|
|
|
|
|
|
|
|
|
|
# Find current variable lower and upper bounds
|
|
|
|
|
offset = findfirst(isequal(var), node.mip.int_vars)
|
|
|
|
|
var_lb = node.mip.int_vars_lb[offset]
|
|
|
|
|
var_ub = node.mip.int_vars_ub[offset]
|
|
|
|
|
for (offset, v) in enumerate(node.branch_vars)
|
|
|
|
|
if v == var
|
|
|
|
|
var_lb = max(var_lb, node.branch_lb[offset])
|
|
|
|
|
var_ub = min(var_ub, node.branch_ub[offset])
|
|
|
|
|
end
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
obj_up, obj_down = 0, 0
|
|
|
|
|
obj_up, obj_down = probe(node.mip, var, x, var_lb, var_ub, max_iterations)
|
|
|
|
|
obj_change_up = obj_up - node.obj
|
|
|
|
|
obj_change_down = obj_down - node.obj
|
|
|
|
|
if side_effect
|
|
|
|
|
_update_var_history(
|
|
|
|
|
pool = pool,
|
|
|
|
|
var = var,
|
|
|
|
|
x = x,
|
|
|
|
|
obj_change_down = obj_change_down,
|
|
|
|
|
obj_change_up = obj_change_up,
|
|
|
|
|
)
|
|
|
|
|
end
|
|
|
|
|
if aggregation == :prod
|
|
|
|
|
return (obj_change_up * obj_change_down, var.index)
|
|
|
|
|
elseif aggregation == :min
|
|
|
|
|
sense = node.mip.sense
|
|
|
|
|
return (min(sense * obj_up, sense * obj_down), var.index)
|
|
|
|
|
else
|
|
|
|
|
error("Unknown aggregation: $aggregation")
|
|
|
|
|
end
|
|
|
|
|
return find_branching_var(rb_rule, node, pool)
|
|
|
|
|
end
|
|
|
|
|