mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-07 16:58:52 -06:00
Reformat source code
This commit is contained in:
@@ -10,34 +10,32 @@ function gen_stab()
|
||||
randint = pyimport("scipy.stats").randint
|
||||
np.random.seed(42)
|
||||
gen = MaxWeightStableSetGenerator(
|
||||
w=uniform(10.0, scale=1.0),
|
||||
n=randint(low=50, high=51),
|
||||
p=uniform(loc=0.5, scale=0.0),
|
||||
fix_graph=true,
|
||||
w = uniform(10.0, scale = 1.0),
|
||||
n = randint(low = 50, high = 51),
|
||||
p = uniform(loc = 0.5, scale = 0.0),
|
||||
fix_graph = true,
|
||||
)
|
||||
data = gen.generate(1)
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="stab-n50-")
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "stab-n50-")
|
||||
collector = BasicCollector()
|
||||
collector.collect(
|
||||
data_filenames,
|
||||
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
|
||||
progress=true,
|
||||
verbose=true,
|
||||
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
|
||||
progress = true,
|
||||
verbose = true,
|
||||
)
|
||||
end
|
||||
|
||||
function test_cuts()
|
||||
data_filenames = ["$BASEDIR/../fixtures/stab-n50-00000.pkl.gz"]
|
||||
clf = pyimport("sklearn.dummy").DummyClassifier()
|
||||
extractor = H5FieldsExtractor(
|
||||
instance_fields=["static_var_obj_coeffs"],
|
||||
)
|
||||
comp = MemorizingCutsComponent(clf=clf, extractor=extractor)
|
||||
solver = LearningSolver(components=[comp])
|
||||
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
|
||||
comp = MemorizingCutsComponent(clf = clf, extractor = extractor)
|
||||
solver = LearningSolver(components = [comp])
|
||||
solver.fit(data_filenames)
|
||||
stats = solver.optimize(
|
||||
data_filenames[1],
|
||||
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
|
||||
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
|
||||
)
|
||||
@test stats["Cuts: AOT"] > 0
|
||||
end
|
||||
|
||||
@@ -11,36 +11,34 @@ function gen_tsp()
|
||||
np.random.seed(42)
|
||||
|
||||
gen = TravelingSalesmanGenerator(
|
||||
x=uniform(loc=0.0, scale=1000.0),
|
||||
y=uniform(loc=0.0, scale=1000.0),
|
||||
n=randint(low=20, high=21),
|
||||
gamma=uniform(loc=1.0, scale=0.25),
|
||||
fix_cities=true,
|
||||
round=true,
|
||||
x = uniform(loc = 0.0, scale = 1000.0),
|
||||
y = uniform(loc = 0.0, scale = 1000.0),
|
||||
n = randint(low = 20, high = 21),
|
||||
gamma = uniform(loc = 1.0, scale = 0.25),
|
||||
fix_cities = true,
|
||||
round = true,
|
||||
)
|
||||
data = gen.generate(1)
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="tsp-n20-")
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "tsp-n20-")
|
||||
collector = BasicCollector()
|
||||
collector.collect(
|
||||
data_filenames,
|
||||
data -> build_tsp_model_jump(data, optimizer=GLPK.Optimizer),
|
||||
progress=true,
|
||||
verbose=true,
|
||||
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
|
||||
progress = true,
|
||||
verbose = true,
|
||||
)
|
||||
end
|
||||
|
||||
function test_lazy()
|
||||
data_filenames = ["$BASEDIR/../fixtures/tsp-n20-00000.pkl.gz"]
|
||||
clf = pyimport("sklearn.dummy").DummyClassifier()
|
||||
extractor = H5FieldsExtractor(
|
||||
instance_fields=["static_var_obj_coeffs"],
|
||||
)
|
||||
comp = MemorizingLazyComponent(clf=clf, extractor=extractor)
|
||||
solver = LearningSolver(components=[comp])
|
||||
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
|
||||
comp = MemorizingLazyComponent(clf = clf, extractor = extractor)
|
||||
solver = LearningSolver(components = [comp])
|
||||
solver.fit(data_filenames)
|
||||
stats = solver.optimize(
|
||||
data_filenames[1],
|
||||
data -> build_tsp_model_jump(data, optimizer=GLPK.Optimizer),
|
||||
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
|
||||
)
|
||||
@test stats["Lazy Constraints: AOT"] > 0
|
||||
end
|
||||
|
||||
Reference in New Issue
Block a user