mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 00:18:51 -06:00
Make GMI cuts more stable
This commit is contained in:
@@ -9,6 +9,7 @@ import ..to_str_array
|
||||
include("tableau/structs.jl")
|
||||
|
||||
# include("blackbox/cplex.jl")
|
||||
include("tableau/numerics.jl")
|
||||
include("tableau/collect.jl")
|
||||
include("tableau/gmi.jl")
|
||||
include("tableau/moi.jl")
|
||||
|
||||
@@ -5,8 +5,10 @@
|
||||
import ..H5File
|
||||
|
||||
using OrderedCollections
|
||||
using Statistics
|
||||
|
||||
function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_round = 100)
|
||||
|
||||
function collect_gmi(mps_filename; optimizer, max_rounds=10, max_cuts_per_round=100, atol=1e-4)
|
||||
@info mps_filename
|
||||
reset_timer!()
|
||||
|
||||
@@ -27,7 +29,7 @@ function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_roun
|
||||
if obj_mip === nothing
|
||||
obj_mip = h5.get_scalar("mip_obj_value")
|
||||
end
|
||||
obj_lp = nothing
|
||||
obj_lp = h5.get_scalar("lp_obj_value")
|
||||
h5.file.close()
|
||||
|
||||
# Define relative MIP gap
|
||||
@@ -58,8 +60,8 @@ function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_roun
|
||||
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
||||
|
||||
# Assert optimal solution is feasible for the original problem
|
||||
@assert all(data.constr_lb .- 1e-3 .<= data.constr_lhs * sol_opt)
|
||||
@assert all(data.constr_lhs * sol_opt .<= data.constr_ub .+ 1e-3)
|
||||
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
|
||||
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
|
||||
|
||||
# Convert to standard form
|
||||
data_s, transforms = convert_to_standard_form(data)
|
||||
@@ -71,15 +73,17 @@ function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_roun
|
||||
sol_opt_s = forward(transforms, sol_opt)
|
||||
|
||||
# Assert converted solution is feasible for standard form problem
|
||||
@assert data_s.constr_lhs * sol_opt_s ≈ data_s.constr_lb
|
||||
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
|
||||
end
|
||||
|
||||
# Optimize standard form
|
||||
optimize!(model_s)
|
||||
stats_time_solve += solve_time(model_s)
|
||||
obj = objective_value(model_s) + data_s.obj_offset
|
||||
if obj_lp === nothing
|
||||
obj_lp = obj
|
||||
|
||||
if round == 1
|
||||
# Assert standard form problem has same value as original
|
||||
assert_eq(obj, obj_lp)
|
||||
push!(stats_obj, obj)
|
||||
push!(stats_gap, gap(obj))
|
||||
push!(stats_ncuts, 0)
|
||||
@@ -101,8 +105,8 @@ function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_roun
|
||||
tableau = compute_tableau(data_s, basis, sol_frac, rows=selected_rows)
|
||||
|
||||
# Assert tableau rows have been computed correctly
|
||||
@assert tableau.lhs * sol_frac ≈ tableau.rhs
|
||||
@assert tableau.lhs * sol_opt_s ≈ tableau.rhs
|
||||
assert_eq(tableau.lhs * sol_frac, tableau.rhs)
|
||||
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
|
||||
end
|
||||
|
||||
# Compute GMI cuts
|
||||
@@ -110,17 +114,12 @@ function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_roun
|
||||
cuts_s = compute_gmi(data_s, tableau)
|
||||
|
||||
# Assert cuts have been generated correctly
|
||||
try
|
||||
assert_cuts_off(cuts_s, sol_frac)
|
||||
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
||||
catch
|
||||
@warn "Invalid cuts detected. Discarding round $round cuts and aborting."
|
||||
break
|
||||
end
|
||||
|
||||
# Abort if no cuts are left
|
||||
if length(cuts_s.lb) == 0
|
||||
@info "No cuts generated. Aborting."
|
||||
@info "No cuts generated. Stopping."
|
||||
break
|
||||
end
|
||||
end
|
||||
@@ -139,7 +138,7 @@ function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_roun
|
||||
push!(stats_gap, gap(obj))
|
||||
|
||||
# Store useful cuts; drop useless ones from the problem
|
||||
useful = [abs(shadow_price(c)) > 1e-3 for c in constrs]
|
||||
useful = [abs(shadow_price(c)) > atol for c in constrs]
|
||||
drop = findall(useful .== false)
|
||||
keep = findall(useful .== true)
|
||||
delete.(model, constrs[drop])
|
||||
@@ -174,7 +173,6 @@ function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_roun
|
||||
"time_tableau" => stats_time_tableau,
|
||||
"time_gmi" => stats_time_gmi,
|
||||
"obj_mip" => obj_mip,
|
||||
"obj_lp" => obj_lp,
|
||||
"stats_obj" => stats_obj,
|
||||
"stats_gap" => stats_gap,
|
||||
"stats_ncuts" => stats_ncuts,
|
||||
|
||||
@@ -5,13 +5,14 @@
|
||||
using SparseArrays
|
||||
using TimerOutputs
|
||||
|
||||
@inline frac(x::Float64) = x - floor(x)
|
||||
|
||||
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
|
||||
function select_gmi_rows(data, basis, x; max_rows=10, atol=1e-4)
|
||||
candidate_rows = [
|
||||
r for
|
||||
r = 1:length(basis.var_basic) if (data.var_types[basis.var_basic[r]] != 'C') &&
|
||||
(frac(x[basis.var_basic[r]]) > atol)
|
||||
r in 1:length(basis.var_basic) if (
|
||||
(data.var_types[basis.var_basic[r]] != 'C') &&
|
||||
(frac(x[basis.var_basic[r]]) > atol) &&
|
||||
(frac2(x[basis.var_basic[r]]) > atol)
|
||||
)
|
||||
]
|
||||
candidate_vals = frac.(x[basis.var_basic[candidate_rows]])
|
||||
score = abs.(candidate_vals .- 0.5)
|
||||
@@ -19,34 +20,36 @@ function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
|
||||
return [candidate_rows[perm[i]] for i = 1:min(length(perm), max_rows)]
|
||||
end
|
||||
|
||||
function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::ConstraintSet
|
||||
function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
|
||||
nrows, ncols = size(tableau.lhs)
|
||||
ub = Float64[Inf for _ = 1:nrows]
|
||||
lb = Float64[0.999 for _ = 1:nrows]
|
||||
lb = Float64[0.9999 for _ = 1:nrows]
|
||||
tableau_I, tableau_J, tableau_V = findnz(tableau.lhs)
|
||||
lhs_I = Int[]
|
||||
lhs_J = Int[]
|
||||
lhs_V = Float64[]
|
||||
@timeit "Compute coefficients" begin
|
||||
for k = 1:nnz(tableau.lhs)
|
||||
for k in 1:nnz(tableau.lhs)
|
||||
i::Int = tableau_I[k]
|
||||
j::Int = tableau_J[k]
|
||||
v::Float64 = 0.0
|
||||
alpha_j = frac(tableau_V[k])
|
||||
frac_alpha_j = frac(tableau_V[k])
|
||||
alpha_j = tableau_V[k]
|
||||
beta = frac(tableau.rhs[i])
|
||||
if data.var_types[i] == "C"
|
||||
if data.var_types[j] == 'C'
|
||||
if alpha_j >= 0
|
||||
v = alpha_j / beta
|
||||
else
|
||||
v = alpha_j / (1 - beta)
|
||||
v = -alpha_j / (1 - beta)
|
||||
end
|
||||
else
|
||||
if alpha_j <= beta
|
||||
v = alpha_j / beta
|
||||
if frac_alpha_j < beta
|
||||
v = frac_alpha_j / beta
|
||||
else
|
||||
v = (1 - alpha_j) / (1 - beta)
|
||||
v = (1 - frac_alpha_j) / (1 - beta)
|
||||
end
|
||||
end
|
||||
if abs(v) > tol
|
||||
if abs(v) > 1e-8
|
||||
push!(lhs_I, i)
|
||||
push!(lhs_J, tableau_J[k])
|
||||
push!(lhs_V, v)
|
||||
@@ -57,28 +60,4 @@ function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::Constrain
|
||||
return ConstraintSet(; lhs, ub, lb)
|
||||
end
|
||||
|
||||
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
|
||||
for i = 1:length(cuts.lb)
|
||||
val = cuts.lhs[i, :]' * x
|
||||
if (val <= cuts.ub[i] - tol) && (val >= cuts.lb[i] + tol)
|
||||
throw(ErrorException("inequality fails to cut off fractional solution"))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
|
||||
for i = 1:length(cuts.lb)
|
||||
val = cuts.lhs[i, :]' * x
|
||||
ub = cuts.ub[i]
|
||||
lb = cuts.lb[i]
|
||||
if (val >= ub) || (val <= lb)
|
||||
throw(
|
||||
ErrorException(
|
||||
"inequality $i cuts off integer solution ($lb <= $val <= $ub)",
|
||||
),
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
export compute_gmi, frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off
|
||||
|
||||
51
src/Cuts/tableau/numerics.jl
Normal file
51
src/Cuts/tableau/numerics.jl
Normal file
@@ -0,0 +1,51 @@
|
||||
@inline frac(x::Float64) = x - floor(x)
|
||||
|
||||
@inline frac2(x::Float64) = ceil(x) - x
|
||||
|
||||
function assert_leq(a, b; atol=0.01)
|
||||
if !all(a .<= b .+ atol)
|
||||
delta = a .- b
|
||||
for i in eachindex(delta)
|
||||
if delta[i] > atol
|
||||
@info "Assertion failed: a[$i] = $(a[i]) <= $(b[i]) = b[$i]"
|
||||
end
|
||||
end
|
||||
error("assert_leq failed")
|
||||
end
|
||||
end
|
||||
|
||||
function assert_eq(a, b; atol=1e-4)
|
||||
if !all(abs.(a .- b) .<= atol)
|
||||
delta = abs.(a .- b)
|
||||
for i in eachindex(delta)
|
||||
if delta[i] > atol
|
||||
@info "Assertion failed: a[$i] = $(a[i]) == $(b[i]) = b[$i]"
|
||||
end
|
||||
end
|
||||
error("assert_eq failed")
|
||||
end
|
||||
end
|
||||
|
||||
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol=1e-6)
|
||||
for i = 1:length(cuts.lb)
|
||||
val = cuts.lhs[i, :]' * x
|
||||
if (val <= cuts.ub[i] - tol) && (val >= cuts.lb[i] + tol)
|
||||
throw(ErrorException("inequality fails to cut off fractional solution"))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol=1e-6)
|
||||
for i = 1:length(cuts.lb)
|
||||
val = cuts.lhs[i, :]' * x
|
||||
ub = cuts.ub[i]
|
||||
lb = cuts.lb[i]
|
||||
if (val >= ub) || (val <= lb)
|
||||
throw(
|
||||
ErrorException(
|
||||
"inequality $i cuts off integer solution ($lb <= $val <= $ub)",
|
||||
),
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
Reference in New Issue
Block a user