Replace Gurobi by Clp in most tests

master
Alinson S. Xavier 4 years ago
parent fa7f15b9bd
commit 9f516160ab

@ -4,7 +4,7 @@
using JuMP
using MIPLearn
using Gurobi
using Cbc
@testset "FileInstance" begin
@ -15,7 +15,7 @@ using Gurobi
save(filename, instance)
file_instance = FileInstance(filename)
solver = LearningSolver(Gurobi.Optimizer)
solver = LearningSolver(Cbc.Optimizer)
solve!(solver, file_instance)
loaded = load_instance(filename)

@ -8,9 +8,9 @@ using MIPLearn
MIPLearn.setup_logger()
@testset "MIPLearn" begin
# include("fixtures/knapsack.jl")
include("fixtures/knapsack.jl")
include("solvers/jump_test.jl")
# include("solvers/learning_test.jl")
# include("instance/file_test.jl")
# include("utils/benchmark_test.jl")
include("solvers/learning_test.jl")
include("instance/file_test.jl")
include("utils/benchmark_test.jl")
end

@ -2,14 +2,14 @@
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Cbc
using JuMP
using MIPLearn
using Gurobi
@testset "LearningSolver" begin
@testset "Model with annotations" begin
model = build_knapsack_model()
solver = LearningSolver(Gurobi.Optimizer)
solver = LearningSolver(Cbc.Optimizer)
instance = JuMPInstance(model)
stats = solve!(solver, instance)
@test stats["mip_lower_bound"] == 11.0
@ -20,14 +20,14 @@ using Gurobi
@testset "Model without annotations" begin
model = build_knapsack_model()
solver = LearningSolver(Gurobi.Optimizer)
solver = LearningSolver(Cbc.Optimizer)
instance = JuMPInstance(model)
stats = solve!(solver, instance)
@test stats["mip_lower_bound"] == 11.0
end
@testset "Save and load" begin
solver = LearningSolver(Gurobi.Optimizer)
solver = LearningSolver(Cbc.Optimizer)
solver.py.components = "Placeholder"
filename = tempname()
save(filename, solver)
@ -38,7 +38,7 @@ using Gurobi
@testset "Discard output" begin
instance = build_knapsack_file_instance()
solver = LearningSolver(Gurobi.Optimizer)
solver = LearningSolver(Cbc.Optimizer)
solve!(solver, instance, discard_output=true)
loaded = load_instance(instance.filename)
@test length(loaded.py.samples) == 0

@ -2,19 +2,19 @@
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Cbc
using CSV
using DataFrames
using Gurobi
@testset "BenchmarkRunner" begin
# Initialie instances and generate training data
# Initialize instances and generate training data
instances = [
build_knapsack_file_instance(),
build_knapsack_file_instance(),
]
parallel_solve!(
LearningSolver(Gurobi.Optimizer),
LearningSolver(Cbc.Optimizer),
instances,
)
@ -22,14 +22,14 @@ using Gurobi
benchmark = BenchmarkRunner(
solvers=Dict(
"baseline" => LearningSolver(
Gurobi.Optimizer,
Cbc.Optimizer,
components=[],
),
"ml-exact" => LearningSolver(
Gurobi.Optimizer,
Cbc.Optimizer,
),
"ml-heur" => LearningSolver(
Gurobi.Optimizer,
Cbc.Optimizer,
mode="heuristic",
),
),

Loading…
Cancel
Save