mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 16:38:51 -06:00
Make cuts component compatible with JuMP
This commit is contained in:
@@ -12,6 +12,7 @@ include("components.jl")
|
||||
include("extractors.jl")
|
||||
include("io.jl")
|
||||
include("problems/setcover.jl")
|
||||
include("problems/stab.jl")
|
||||
include("solvers/jump.jl")
|
||||
include("solvers/learning.jl")
|
||||
|
||||
@@ -21,6 +22,7 @@ function __init__()
|
||||
__init_extractors__()
|
||||
__init_io__()
|
||||
__init_problems_setcover__()
|
||||
__init_problems_stab__()
|
||||
__init_solvers_jump__()
|
||||
__init_solvers_learning__()
|
||||
end
|
||||
|
||||
@@ -2,19 +2,21 @@
|
||||
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
global MinProbabilityClassifier = PyNULL()
|
||||
global SingleClassFix = PyNULL()
|
||||
global PrimalComponentAction = PyNULL()
|
||||
global SetWarmStart = PyNULL()
|
||||
global FixVariables = PyNULL()
|
||||
global EnforceProximity = PyNULL()
|
||||
global ExpertPrimalComponent = PyNULL()
|
||||
global FixVariables = PyNULL()
|
||||
global IndependentVarsPrimalComponent = PyNULL()
|
||||
global JointVarsPrimalComponent = PyNULL()
|
||||
global SolutionConstructor = PyNULL()
|
||||
global MemorizingCutsComponent = PyNULL()
|
||||
global MemorizingLazyComponent = PyNULL()
|
||||
global MemorizingPrimalComponent = PyNULL()
|
||||
global SelectTopSolutions = PyNULL()
|
||||
global MergeTopSolutions = PyNULL()
|
||||
global MinProbabilityClassifier = PyNULL()
|
||||
global PrimalComponentAction = PyNULL()
|
||||
global SelectTopSolutions = PyNULL()
|
||||
global SetWarmStart = PyNULL()
|
||||
global SingleClassFix = PyNULL()
|
||||
global SolutionConstructor = PyNULL()
|
||||
|
||||
function __init_components__()
|
||||
copy!(
|
||||
@@ -51,6 +53,8 @@ function __init_components__()
|
||||
)
|
||||
copy!(SelectTopSolutions, pyimport("miplearn.components.primal.mem").SelectTopSolutions)
|
||||
copy!(MergeTopSolutions, pyimport("miplearn.components.primal.mem").MergeTopSolutions)
|
||||
copy!(MemorizingCutsComponent, pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent)
|
||||
copy!(MemorizingLazyComponent, pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent)
|
||||
end
|
||||
|
||||
export MinProbabilityClassifier,
|
||||
@@ -65,4 +69,6 @@ export MinProbabilityClassifier,
|
||||
SolutionConstructor,
|
||||
MemorizingPrimalComponent,
|
||||
SelectTopSolutions,
|
||||
MergeTopSolutions
|
||||
MergeTopSolutions,
|
||||
MemorizingCutsComponent,
|
||||
MemorizingLazyComponent
|
||||
|
||||
@@ -13,12 +13,11 @@ function __init_problems_setcover__()
|
||||
copy!(SetCoverGenerator, pyimport("miplearn.problems.setcover").SetCoverGenerator)
|
||||
end
|
||||
|
||||
function build_setcover_model(data::Any; optimizer = HiGHS.Optimizer)
|
||||
function build_setcover_model_jump(data::Any; optimizer = HiGHS.Optimizer)
|
||||
if data isa String
|
||||
data = read_pkl_gz(data)
|
||||
end
|
||||
model = Model(optimizer)
|
||||
set_silent(model)
|
||||
n_elements, n_sets = size(data.incidence_matrix)
|
||||
E = 0:n_elements-1
|
||||
S = 0:n_sets-1
|
||||
@@ -32,4 +31,4 @@ function build_setcover_model(data::Any; optimizer = HiGHS.Optimizer)
|
||||
return JumpModel(model)
|
||||
end
|
||||
|
||||
export SetCoverData, SetCoverGenerator, build_setcover_model
|
||||
export SetCoverData, SetCoverGenerator, build_setcover_model_jump
|
||||
|
||||
60
src/problems/stab.jl
Normal file
60
src/problems/stab.jl
Normal file
@@ -0,0 +1,60 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using JuMP
|
||||
using HiGHS
|
||||
|
||||
global MaxWeightStableSetData = PyNULL()
|
||||
global MaxWeightStableSetGenerator = PyNULL()
|
||||
|
||||
function __init_problems_stab__()
|
||||
copy!(MaxWeightStableSetData, pyimport("miplearn.problems.stab").MaxWeightStableSetData)
|
||||
copy!(MaxWeightStableSetGenerator, pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator)
|
||||
end
|
||||
|
||||
function build_stab_model_jump(data::Any; optimizer=HiGHS.Optimizer)
|
||||
nx = pyimport("networkx")
|
||||
|
||||
if data isa String
|
||||
data = read_pkl_gz(data)
|
||||
end
|
||||
model = Model(optimizer)
|
||||
|
||||
# Variables and objective function
|
||||
nodes = data.graph.nodes
|
||||
x = @variable(model, x[nodes], Bin)
|
||||
@objective(model, Min, sum(-data.weights[i+1] * x[i] for i in nodes))
|
||||
|
||||
# Edge inequalities
|
||||
for (i1, i2) in data.graph.edges
|
||||
@constraint(model, x[i1] + x[i2] <= 1, base_name = "eq_edge[$i1,$i2]")
|
||||
end
|
||||
|
||||
function cuts_separate(cb_data)
|
||||
x_val = callback_value.(Ref(cb_data), x)
|
||||
violations = []
|
||||
for clique in nx.find_cliques(data.graph)
|
||||
if sum(x_val[i] for i in clique) > 1.0001
|
||||
push!(violations, sort(clique))
|
||||
end
|
||||
end
|
||||
return violations
|
||||
end
|
||||
|
||||
function cuts_enforce(violations)
|
||||
@info "Adding $(length(violations)) clique cuts..."
|
||||
for clique in violations
|
||||
constr = @build_constraint(sum(x[i] for i in clique) <= 1)
|
||||
submit(model, constr)
|
||||
end
|
||||
end
|
||||
|
||||
return JumpModel(
|
||||
model,
|
||||
cuts_separate=cuts_separate,
|
||||
cuts_enforce=cuts_enforce,
|
||||
)
|
||||
end
|
||||
|
||||
export MaxWeightStableSetData, MaxWeightStableSetGenerator, build_stab_model_jump
|
||||
@@ -4,9 +4,19 @@
|
||||
|
||||
using JuMP
|
||||
using HiGHS
|
||||
using JSON
|
||||
|
||||
global JumpModel = PyNULL()
|
||||
|
||||
Base.@kwdef mutable struct _JumpModelExtData
|
||||
aot_cuts = nothing
|
||||
cb_data = nothing
|
||||
cuts = []
|
||||
where::Symbol = :WHERE_DEFAULT
|
||||
cuts_enforce::Union{Function,Nothing} = nothing
|
||||
cuts_separate::Union{Function,Nothing} = nothing
|
||||
end
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
function _add_constrs(
|
||||
@@ -35,6 +45,15 @@ function _add_constrs(
|
||||
end
|
||||
end
|
||||
|
||||
function submit(model::JuMP.Model, constr)
|
||||
ext = model.ext[:miplearn]
|
||||
if ext.where == :WHERE_CUTS
|
||||
MOI.submit(model, MOI.UserCut(ext.cb_data), constr)
|
||||
else
|
||||
error("not implemented")
|
||||
end
|
||||
end
|
||||
|
||||
function _extract_after_load(model::JuMP.Model, h5)
|
||||
if JuMP.objective_sense(model) == MOI.MIN_SENSE
|
||||
h5.put_scalar("static_sense", "min")
|
||||
@@ -109,6 +128,9 @@ function _extract_after_load_constrs(model::JuMP.Model, h5)
|
||||
end
|
||||
end
|
||||
end
|
||||
if isempty(names)
|
||||
error("no model constraints found; note that MIPLearn ignores unnamed constraints")
|
||||
end
|
||||
lhs = sparse(lhs_rows, lhs_cols, lhs_values, length(rhs), JuMP.num_variables(model))
|
||||
h5.put_sparse("static_constr_lhs", lhs)
|
||||
h5.put_array("static_constr_rhs", rhs)
|
||||
@@ -249,17 +271,50 @@ function _extract_after_mip(model::JuMP.Model, h5)
|
||||
rhs = h5.get_array("static_constr_rhs")
|
||||
slacks = abs.(lhs * x - rhs)
|
||||
h5.put_array("mip_constr_slacks", slacks)
|
||||
|
||||
# Cuts
|
||||
ext = model.ext[:miplearn]
|
||||
h5.put_scalar("mip_cuts", JSON.json(ext.cuts))
|
||||
end
|
||||
|
||||
function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
|
||||
vars = [variable_by_name(model, v) for v in var_names]
|
||||
for (i, var) in enumerate(vars)
|
||||
fix(var, var_values[i], force = true)
|
||||
fix(var, var_values[i], force=true)
|
||||
end
|
||||
end
|
||||
|
||||
function _optimize(model::JuMP.Model)
|
||||
# Set up cut callbacks
|
||||
ext = model.ext[:miplearn]
|
||||
ext.cuts = []
|
||||
function cut_callback(cb_data)
|
||||
ext.cb_data = cb_data
|
||||
ext.where = :WHERE_CUTS
|
||||
if ext.aot_cuts !== nothing
|
||||
@info "Enforcing $(length(ext.aot_cuts)) cuts ahead-of-time..."
|
||||
violations = ext.aot_cuts
|
||||
ext.aot_cuts = nothing
|
||||
else
|
||||
violations = ext.cuts_separate(cb_data)
|
||||
for v in violations
|
||||
push!(ext.cuts, v)
|
||||
end
|
||||
end
|
||||
if !isempty(violations)
|
||||
ext.cuts_enforce(violations)
|
||||
end
|
||||
end
|
||||
if ext.cuts_separate !== nothing
|
||||
set_attribute(model, MOI.UserCutCallback(), cut_callback)
|
||||
end
|
||||
|
||||
# Optimize
|
||||
ext.where = :WHERE_DEFAULT
|
||||
optimize!(model)
|
||||
|
||||
# Cleanup
|
||||
ext.cb_data = nothing
|
||||
flush(stdout)
|
||||
Libc.flush_cstdio()
|
||||
end
|
||||
@@ -291,10 +346,21 @@ end
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
function __init_solvers_jump__()
|
||||
@pydef mutable struct Class
|
||||
AbstractModel = pyimport("miplearn.solvers.abstract").AbstractModel
|
||||
@pydef mutable struct Class <: AbstractModel
|
||||
|
||||
function __init__(self, inner)
|
||||
function __init__(
|
||||
self,
|
||||
inner;
|
||||
cuts_enforce::Union{Function,Nothing}=nothing,
|
||||
cuts_separate::Union{Function,Nothing}=nothing,
|
||||
)
|
||||
AbstractModel.__init__(self)
|
||||
self.inner = inner
|
||||
self.inner.ext[:miplearn] = _JumpModelExtData(
|
||||
cuts_enforce=cuts_enforce,
|
||||
cuts_separate=cuts_separate,
|
||||
)
|
||||
end
|
||||
|
||||
add_constrs(
|
||||
@@ -303,7 +369,7 @@ function __init_solvers_jump__()
|
||||
constrs_lhs,
|
||||
constrs_sense,
|
||||
constrs_rhs,
|
||||
stats = nothing,
|
||||
stats=nothing,
|
||||
) = _add_constrs(
|
||||
self.inner,
|
||||
from_str_array(var_names),
|
||||
@@ -319,17 +385,21 @@ function __init_solvers_jump__()
|
||||
|
||||
extract_after_mip(self, h5) = _extract_after_mip(self.inner, h5)
|
||||
|
||||
fix_variables(self, var_names, var_values, stats = nothing) =
|
||||
fix_variables(self, var_names, var_values, stats=nothing) =
|
||||
_fix_variables(self.inner, from_str_array(var_names), var_values, stats)
|
||||
|
||||
optimize(self) = _optimize(self.inner)
|
||||
|
||||
relax(self) = Class(_relax(self.inner))
|
||||
|
||||
set_warm_starts(self, var_names, var_values, stats = nothing) =
|
||||
set_warm_starts(self, var_names, var_values, stats=nothing) =
|
||||
_set_warm_starts(self.inner, from_str_array(var_names), var_values, stats)
|
||||
|
||||
write(self, filename) = _write(self.inner, filename)
|
||||
|
||||
function set_cuts(self, cuts)
|
||||
self.inner.ext[:miplearn].aot_cuts = cuts
|
||||
end
|
||||
end
|
||||
copy!(JumpModel, Class)
|
||||
end
|
||||
|
||||
Reference in New Issue
Block a user