Make cuts component compatible with JuMP

This commit is contained in:
2024-02-01 12:01:55 -06:00
parent 1ea432fb57
commit d69c4bbfa7
16 changed files with 252 additions and 38 deletions

View File

@@ -15,6 +15,7 @@ Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68"
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[compat]

BIN
test/fixtures/bell5.h5 vendored

Binary file not shown.

BIN
test/fixtures/stab-n50-00000.h5 vendored Normal file

Binary file not shown.

BIN
test/fixtures/stab-n50-00000.pkl.gz vendored Normal file

Binary file not shown.

View File

@@ -16,10 +16,12 @@ FIXTURES = "$BASEDIR/../fixtures"
include("fixtures.jl")
include("BB/test_bb.jl")
include("components/test_cuts.jl")
include("Cuts/BlackBox/test_cplex.jl")
include("problems/test_setcover.jl")
include("test_io.jl")
include("problems/test_stab.jl")
include("solvers/test_jump.jl")
include("test_io.jl")
include("test_usage.jl")
function runtests()
@@ -27,17 +29,18 @@ function runtests()
@testset "BB" begin
test_bb()
end
# test_cuts_blackbox_cplex()
test_io()
test_problems_setcover()
test_problems_stab()
test_solvers_jump()
test_usage()
test_cuts()
end
end
function format()
JuliaFormatter.format(BASEDIR, verbose = true)
JuliaFormatter.format("$BASEDIR/../../src", verbose = true)
JuliaFormatter.format(BASEDIR, verbose=true)
JuliaFormatter.format("$BASEDIR/../../src", verbose=true)
return
end

View File

@@ -0,0 +1,45 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using SCIP
function gen_stab()
np = pyimport("numpy")
uniform = pyimport("scipy.stats").uniform
randint = pyimport("scipy.stats").randint
np.random.seed(42)
gen = MaxWeightStableSetGenerator(
w=uniform(10.0, scale=1.0),
n=randint(low=50, high=51),
p=uniform(loc=0.5, scale=0.0),
fix_graph=true,
)
data = gen.generate(1)
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="stab-n50-")
collector = BasicCollector(write_mps=false)
collector.collect(
data_filenames,
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
progress=true,
verbose=true,
)
end
function test_cuts()
data_filenames = ["$BASEDIR/../fixtures/stab-n50-0000$i.pkl.gz" for i in 0:0]
clf = pyimport("sklearn.neighbors").KNeighborsClassifier(n_neighbors=1)
extractor = H5FieldsExtractor(
instance_fields=["static_var_obj_coeffs"],
)
comp = MemorizingCutsComponent(clf=clf, extractor=extractor)
solver = LearningSolver(components=[comp])
solver.fit(data_filenames)
@show comp.n_features_
@show comp.n_targets_
stats = solver.optimize(
data_filenames[1],
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
)
@test stats["Cuts: AOT"] > 0
end

View File

@@ -14,5 +14,5 @@ function fixture_setcover_data()
end
function fixture_setcover_model()
return build_setcover_model(fixture_setcover_data())
return build_setcover_model_jump(fixture_setcover_data())
end

View File

@@ -51,7 +51,7 @@ function test_problems_setcover_model()
)
h5 = H5File(tempname(), "w")
model = build_setcover_model(data)
model = build_setcover_model_jump(data)
model.extract_after_load(h5)
model.optimize()
model.extract_after_mip(h5)

View File

@@ -0,0 +1,27 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using PyCall
using SCIP
function test_problems_stab()
test_problems_stab_1()
test_problems_stab_2()
end
function test_problems_stab_1()
nx = pyimport("networkx")
data = MaxWeightStableSetData(
graph=nx.gnp_random_graph(25, 0.5, seed=42),
weights=repeat([1.0], 25),
)
h5 = H5File(tempname(), "w")
model = build_stab_model_jump(data, optimizer=SCIP.Optimizer)
model.extract_after_load(h5)
model.optimize()
model.extract_after_mip(h5)
@test h5.get_scalar("mip_obj_value") == -6
@test h5.get_scalar("mip_cuts")[1:20] == "[[0,8,11,13],[0,8,13"
h5.close()
end

View File

@@ -29,13 +29,13 @@ function test_usage()
@debug "Collecting training data..."
bc = BasicCollector()
bc.collect(data_filenames, build_setcover_model)
bc.collect(data_filenames, build_setcover_model_jump)
@debug "Training models..."
solver.fit(data_filenames)
@debug "Solving model..."
solver.optimize(data_filenames[1], build_setcover_model)
solver.optimize(data_filenames[1], build_setcover_model_jump)
@debug "Checking solution..."
h5 = H5File(h5_filenames[1])