mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-07 16:58:52 -06:00
Make cuts component compatible with JuMP
This commit is contained in:
45
test/src/components/test_cuts.jl
Normal file
45
test/src/components/test_cuts.jl
Normal file
@@ -0,0 +1,45 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using SCIP
|
||||
|
||||
function gen_stab()
|
||||
np = pyimport("numpy")
|
||||
uniform = pyimport("scipy.stats").uniform
|
||||
randint = pyimport("scipy.stats").randint
|
||||
np.random.seed(42)
|
||||
gen = MaxWeightStableSetGenerator(
|
||||
w=uniform(10.0, scale=1.0),
|
||||
n=randint(low=50, high=51),
|
||||
p=uniform(loc=0.5, scale=0.0),
|
||||
fix_graph=true,
|
||||
)
|
||||
data = gen.generate(1)
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="stab-n50-")
|
||||
collector = BasicCollector(write_mps=false)
|
||||
collector.collect(
|
||||
data_filenames,
|
||||
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
|
||||
progress=true,
|
||||
verbose=true,
|
||||
)
|
||||
end
|
||||
|
||||
function test_cuts()
|
||||
data_filenames = ["$BASEDIR/../fixtures/stab-n50-0000$i.pkl.gz" for i in 0:0]
|
||||
clf = pyimport("sklearn.neighbors").KNeighborsClassifier(n_neighbors=1)
|
||||
extractor = H5FieldsExtractor(
|
||||
instance_fields=["static_var_obj_coeffs"],
|
||||
)
|
||||
comp = MemorizingCutsComponent(clf=clf, extractor=extractor)
|
||||
solver = LearningSolver(components=[comp])
|
||||
solver.fit(data_filenames)
|
||||
@show comp.n_features_
|
||||
@show comp.n_targets_
|
||||
stats = solver.optimize(
|
||||
data_filenames[1],
|
||||
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
|
||||
)
|
||||
@test stats["Cuts: AOT"] > 0
|
||||
end
|
||||
Reference in New Issue
Block a user