mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 16:38:51 -06:00
Make cuts component compatible with JuMP
This commit is contained in:
27
Project.toml
27
Project.toml
@@ -9,6 +9,7 @@ DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
|
|||||||
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
|
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
|
||||||
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
|
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
|
||||||
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
|
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
|
||||||
|
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
|
||||||
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
|
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
|
||||||
KLU = "ef3ab10e-7fda-4108-b977-705223b18434"
|
KLU = "ef3ab10e-7fda-4108-b977-705223b18434"
|
||||||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||||
@@ -23,17 +24,17 @@ Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
|
|||||||
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
|
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
|
||||||
|
|
||||||
[compat]
|
[compat]
|
||||||
|
Conda = "1"
|
||||||
|
DataStructures = "0.18"
|
||||||
|
HDF5 = "0.16"
|
||||||
|
HiGHS = "1"
|
||||||
|
JLD2 = "0.4"
|
||||||
|
JuMP = "1"
|
||||||
|
KLU = "0.4"
|
||||||
|
MathOptInterface = "1"
|
||||||
|
OrderedCollections = "1"
|
||||||
|
PyCall = "1"
|
||||||
|
Requires = "1"
|
||||||
|
Statistics = "1"
|
||||||
|
TimerOutputs = "0.5"
|
||||||
julia = "1"
|
julia = "1"
|
||||||
Conda="1"
|
|
||||||
DataStructures="0.18"
|
|
||||||
HDF5="0.16"
|
|
||||||
HiGHS="1"
|
|
||||||
JLD2="0.4"
|
|
||||||
JuMP="1"
|
|
||||||
KLU="0.4"
|
|
||||||
MathOptInterface="1"
|
|
||||||
OrderedCollections="1"
|
|
||||||
PyCall="1"
|
|
||||||
Requires="1"
|
|
||||||
Statistics="1"
|
|
||||||
TimerOutputs="0.5"
|
|
||||||
@@ -12,6 +12,7 @@ include("components.jl")
|
|||||||
include("extractors.jl")
|
include("extractors.jl")
|
||||||
include("io.jl")
|
include("io.jl")
|
||||||
include("problems/setcover.jl")
|
include("problems/setcover.jl")
|
||||||
|
include("problems/stab.jl")
|
||||||
include("solvers/jump.jl")
|
include("solvers/jump.jl")
|
||||||
include("solvers/learning.jl")
|
include("solvers/learning.jl")
|
||||||
|
|
||||||
@@ -21,6 +22,7 @@ function __init__()
|
|||||||
__init_extractors__()
|
__init_extractors__()
|
||||||
__init_io__()
|
__init_io__()
|
||||||
__init_problems_setcover__()
|
__init_problems_setcover__()
|
||||||
|
__init_problems_stab__()
|
||||||
__init_solvers_jump__()
|
__init_solvers_jump__()
|
||||||
__init_solvers_learning__()
|
__init_solvers_learning__()
|
||||||
end
|
end
|
||||||
|
|||||||
@@ -2,19 +2,21 @@
|
|||||||
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
global MinProbabilityClassifier = PyNULL()
|
|
||||||
global SingleClassFix = PyNULL()
|
|
||||||
global PrimalComponentAction = PyNULL()
|
|
||||||
global SetWarmStart = PyNULL()
|
|
||||||
global FixVariables = PyNULL()
|
|
||||||
global EnforceProximity = PyNULL()
|
global EnforceProximity = PyNULL()
|
||||||
global ExpertPrimalComponent = PyNULL()
|
global ExpertPrimalComponent = PyNULL()
|
||||||
|
global FixVariables = PyNULL()
|
||||||
global IndependentVarsPrimalComponent = PyNULL()
|
global IndependentVarsPrimalComponent = PyNULL()
|
||||||
global JointVarsPrimalComponent = PyNULL()
|
global JointVarsPrimalComponent = PyNULL()
|
||||||
global SolutionConstructor = PyNULL()
|
global MemorizingCutsComponent = PyNULL()
|
||||||
|
global MemorizingLazyComponent = PyNULL()
|
||||||
global MemorizingPrimalComponent = PyNULL()
|
global MemorizingPrimalComponent = PyNULL()
|
||||||
global SelectTopSolutions = PyNULL()
|
|
||||||
global MergeTopSolutions = PyNULL()
|
global MergeTopSolutions = PyNULL()
|
||||||
|
global MinProbabilityClassifier = PyNULL()
|
||||||
|
global PrimalComponentAction = PyNULL()
|
||||||
|
global SelectTopSolutions = PyNULL()
|
||||||
|
global SetWarmStart = PyNULL()
|
||||||
|
global SingleClassFix = PyNULL()
|
||||||
|
global SolutionConstructor = PyNULL()
|
||||||
|
|
||||||
function __init_components__()
|
function __init_components__()
|
||||||
copy!(
|
copy!(
|
||||||
@@ -51,6 +53,8 @@ function __init_components__()
|
|||||||
)
|
)
|
||||||
copy!(SelectTopSolutions, pyimport("miplearn.components.primal.mem").SelectTopSolutions)
|
copy!(SelectTopSolutions, pyimport("miplearn.components.primal.mem").SelectTopSolutions)
|
||||||
copy!(MergeTopSolutions, pyimport("miplearn.components.primal.mem").MergeTopSolutions)
|
copy!(MergeTopSolutions, pyimport("miplearn.components.primal.mem").MergeTopSolutions)
|
||||||
|
copy!(MemorizingCutsComponent, pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent)
|
||||||
|
copy!(MemorizingLazyComponent, pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent)
|
||||||
end
|
end
|
||||||
|
|
||||||
export MinProbabilityClassifier,
|
export MinProbabilityClassifier,
|
||||||
@@ -65,4 +69,6 @@ export MinProbabilityClassifier,
|
|||||||
SolutionConstructor,
|
SolutionConstructor,
|
||||||
MemorizingPrimalComponent,
|
MemorizingPrimalComponent,
|
||||||
SelectTopSolutions,
|
SelectTopSolutions,
|
||||||
MergeTopSolutions
|
MergeTopSolutions,
|
||||||
|
MemorizingCutsComponent,
|
||||||
|
MemorizingLazyComponent
|
||||||
|
|||||||
@@ -13,12 +13,11 @@ function __init_problems_setcover__()
|
|||||||
copy!(SetCoverGenerator, pyimport("miplearn.problems.setcover").SetCoverGenerator)
|
copy!(SetCoverGenerator, pyimport("miplearn.problems.setcover").SetCoverGenerator)
|
||||||
end
|
end
|
||||||
|
|
||||||
function build_setcover_model(data::Any; optimizer = HiGHS.Optimizer)
|
function build_setcover_model_jump(data::Any; optimizer = HiGHS.Optimizer)
|
||||||
if data isa String
|
if data isa String
|
||||||
data = read_pkl_gz(data)
|
data = read_pkl_gz(data)
|
||||||
end
|
end
|
||||||
model = Model(optimizer)
|
model = Model(optimizer)
|
||||||
set_silent(model)
|
|
||||||
n_elements, n_sets = size(data.incidence_matrix)
|
n_elements, n_sets = size(data.incidence_matrix)
|
||||||
E = 0:n_elements-1
|
E = 0:n_elements-1
|
||||||
S = 0:n_sets-1
|
S = 0:n_sets-1
|
||||||
@@ -32,4 +31,4 @@ function build_setcover_model(data::Any; optimizer = HiGHS.Optimizer)
|
|||||||
return JumpModel(model)
|
return JumpModel(model)
|
||||||
end
|
end
|
||||||
|
|
||||||
export SetCoverData, SetCoverGenerator, build_setcover_model
|
export SetCoverData, SetCoverGenerator, build_setcover_model_jump
|
||||||
|
|||||||
60
src/problems/stab.jl
Normal file
60
src/problems/stab.jl
Normal file
@@ -0,0 +1,60 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using JuMP
|
||||||
|
using HiGHS
|
||||||
|
|
||||||
|
global MaxWeightStableSetData = PyNULL()
|
||||||
|
global MaxWeightStableSetGenerator = PyNULL()
|
||||||
|
|
||||||
|
function __init_problems_stab__()
|
||||||
|
copy!(MaxWeightStableSetData, pyimport("miplearn.problems.stab").MaxWeightStableSetData)
|
||||||
|
copy!(MaxWeightStableSetGenerator, pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator)
|
||||||
|
end
|
||||||
|
|
||||||
|
function build_stab_model_jump(data::Any; optimizer=HiGHS.Optimizer)
|
||||||
|
nx = pyimport("networkx")
|
||||||
|
|
||||||
|
if data isa String
|
||||||
|
data = read_pkl_gz(data)
|
||||||
|
end
|
||||||
|
model = Model(optimizer)
|
||||||
|
|
||||||
|
# Variables and objective function
|
||||||
|
nodes = data.graph.nodes
|
||||||
|
x = @variable(model, x[nodes], Bin)
|
||||||
|
@objective(model, Min, sum(-data.weights[i+1] * x[i] for i in nodes))
|
||||||
|
|
||||||
|
# Edge inequalities
|
||||||
|
for (i1, i2) in data.graph.edges
|
||||||
|
@constraint(model, x[i1] + x[i2] <= 1, base_name = "eq_edge[$i1,$i2]")
|
||||||
|
end
|
||||||
|
|
||||||
|
function cuts_separate(cb_data)
|
||||||
|
x_val = callback_value.(Ref(cb_data), x)
|
||||||
|
violations = []
|
||||||
|
for clique in nx.find_cliques(data.graph)
|
||||||
|
if sum(x_val[i] for i in clique) > 1.0001
|
||||||
|
push!(violations, sort(clique))
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return violations
|
||||||
|
end
|
||||||
|
|
||||||
|
function cuts_enforce(violations)
|
||||||
|
@info "Adding $(length(violations)) clique cuts..."
|
||||||
|
for clique in violations
|
||||||
|
constr = @build_constraint(sum(x[i] for i in clique) <= 1)
|
||||||
|
submit(model, constr)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
return JumpModel(
|
||||||
|
model,
|
||||||
|
cuts_separate=cuts_separate,
|
||||||
|
cuts_enforce=cuts_enforce,
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
export MaxWeightStableSetData, MaxWeightStableSetGenerator, build_stab_model_jump
|
||||||
@@ -4,9 +4,19 @@
|
|||||||
|
|
||||||
using JuMP
|
using JuMP
|
||||||
using HiGHS
|
using HiGHS
|
||||||
|
using JSON
|
||||||
|
|
||||||
global JumpModel = PyNULL()
|
global JumpModel = PyNULL()
|
||||||
|
|
||||||
|
Base.@kwdef mutable struct _JumpModelExtData
|
||||||
|
aot_cuts = nothing
|
||||||
|
cb_data = nothing
|
||||||
|
cuts = []
|
||||||
|
where::Symbol = :WHERE_DEFAULT
|
||||||
|
cuts_enforce::Union{Function,Nothing} = nothing
|
||||||
|
cuts_separate::Union{Function,Nothing} = nothing
|
||||||
|
end
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
function _add_constrs(
|
function _add_constrs(
|
||||||
@@ -35,6 +45,15 @@ function _add_constrs(
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
function submit(model::JuMP.Model, constr)
|
||||||
|
ext = model.ext[:miplearn]
|
||||||
|
if ext.where == :WHERE_CUTS
|
||||||
|
MOI.submit(model, MOI.UserCut(ext.cb_data), constr)
|
||||||
|
else
|
||||||
|
error("not implemented")
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
function _extract_after_load(model::JuMP.Model, h5)
|
function _extract_after_load(model::JuMP.Model, h5)
|
||||||
if JuMP.objective_sense(model) == MOI.MIN_SENSE
|
if JuMP.objective_sense(model) == MOI.MIN_SENSE
|
||||||
h5.put_scalar("static_sense", "min")
|
h5.put_scalar("static_sense", "min")
|
||||||
@@ -109,6 +128,9 @@ function _extract_after_load_constrs(model::JuMP.Model, h5)
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
if isempty(names)
|
||||||
|
error("no model constraints found; note that MIPLearn ignores unnamed constraints")
|
||||||
|
end
|
||||||
lhs = sparse(lhs_rows, lhs_cols, lhs_values, length(rhs), JuMP.num_variables(model))
|
lhs = sparse(lhs_rows, lhs_cols, lhs_values, length(rhs), JuMP.num_variables(model))
|
||||||
h5.put_sparse("static_constr_lhs", lhs)
|
h5.put_sparse("static_constr_lhs", lhs)
|
||||||
h5.put_array("static_constr_rhs", rhs)
|
h5.put_array("static_constr_rhs", rhs)
|
||||||
@@ -249,17 +271,50 @@ function _extract_after_mip(model::JuMP.Model, h5)
|
|||||||
rhs = h5.get_array("static_constr_rhs")
|
rhs = h5.get_array("static_constr_rhs")
|
||||||
slacks = abs.(lhs * x - rhs)
|
slacks = abs.(lhs * x - rhs)
|
||||||
h5.put_array("mip_constr_slacks", slacks)
|
h5.put_array("mip_constr_slacks", slacks)
|
||||||
|
|
||||||
|
# Cuts
|
||||||
|
ext = model.ext[:miplearn]
|
||||||
|
h5.put_scalar("mip_cuts", JSON.json(ext.cuts))
|
||||||
end
|
end
|
||||||
|
|
||||||
function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
|
function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
|
||||||
vars = [variable_by_name(model, v) for v in var_names]
|
vars = [variable_by_name(model, v) for v in var_names]
|
||||||
for (i, var) in enumerate(vars)
|
for (i, var) in enumerate(vars)
|
||||||
fix(var, var_values[i], force = true)
|
fix(var, var_values[i], force=true)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
function _optimize(model::JuMP.Model)
|
function _optimize(model::JuMP.Model)
|
||||||
|
# Set up cut callbacks
|
||||||
|
ext = model.ext[:miplearn]
|
||||||
|
ext.cuts = []
|
||||||
|
function cut_callback(cb_data)
|
||||||
|
ext.cb_data = cb_data
|
||||||
|
ext.where = :WHERE_CUTS
|
||||||
|
if ext.aot_cuts !== nothing
|
||||||
|
@info "Enforcing $(length(ext.aot_cuts)) cuts ahead-of-time..."
|
||||||
|
violations = ext.aot_cuts
|
||||||
|
ext.aot_cuts = nothing
|
||||||
|
else
|
||||||
|
violations = ext.cuts_separate(cb_data)
|
||||||
|
for v in violations
|
||||||
|
push!(ext.cuts, v)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
if !isempty(violations)
|
||||||
|
ext.cuts_enforce(violations)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
if ext.cuts_separate !== nothing
|
||||||
|
set_attribute(model, MOI.UserCutCallback(), cut_callback)
|
||||||
|
end
|
||||||
|
|
||||||
|
# Optimize
|
||||||
|
ext.where = :WHERE_DEFAULT
|
||||||
optimize!(model)
|
optimize!(model)
|
||||||
|
|
||||||
|
# Cleanup
|
||||||
|
ext.cb_data = nothing
|
||||||
flush(stdout)
|
flush(stdout)
|
||||||
Libc.flush_cstdio()
|
Libc.flush_cstdio()
|
||||||
end
|
end
|
||||||
@@ -291,10 +346,21 @@ end
|
|||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
function __init_solvers_jump__()
|
function __init_solvers_jump__()
|
||||||
@pydef mutable struct Class
|
AbstractModel = pyimport("miplearn.solvers.abstract").AbstractModel
|
||||||
|
@pydef mutable struct Class <: AbstractModel
|
||||||
|
|
||||||
function __init__(self, inner)
|
function __init__(
|
||||||
|
self,
|
||||||
|
inner;
|
||||||
|
cuts_enforce::Union{Function,Nothing}=nothing,
|
||||||
|
cuts_separate::Union{Function,Nothing}=nothing,
|
||||||
|
)
|
||||||
|
AbstractModel.__init__(self)
|
||||||
self.inner = inner
|
self.inner = inner
|
||||||
|
self.inner.ext[:miplearn] = _JumpModelExtData(
|
||||||
|
cuts_enforce=cuts_enforce,
|
||||||
|
cuts_separate=cuts_separate,
|
||||||
|
)
|
||||||
end
|
end
|
||||||
|
|
||||||
add_constrs(
|
add_constrs(
|
||||||
@@ -303,7 +369,7 @@ function __init_solvers_jump__()
|
|||||||
constrs_lhs,
|
constrs_lhs,
|
||||||
constrs_sense,
|
constrs_sense,
|
||||||
constrs_rhs,
|
constrs_rhs,
|
||||||
stats = nothing,
|
stats=nothing,
|
||||||
) = _add_constrs(
|
) = _add_constrs(
|
||||||
self.inner,
|
self.inner,
|
||||||
from_str_array(var_names),
|
from_str_array(var_names),
|
||||||
@@ -319,17 +385,21 @@ function __init_solvers_jump__()
|
|||||||
|
|
||||||
extract_after_mip(self, h5) = _extract_after_mip(self.inner, h5)
|
extract_after_mip(self, h5) = _extract_after_mip(self.inner, h5)
|
||||||
|
|
||||||
fix_variables(self, var_names, var_values, stats = nothing) =
|
fix_variables(self, var_names, var_values, stats=nothing) =
|
||||||
_fix_variables(self.inner, from_str_array(var_names), var_values, stats)
|
_fix_variables(self.inner, from_str_array(var_names), var_values, stats)
|
||||||
|
|
||||||
optimize(self) = _optimize(self.inner)
|
optimize(self) = _optimize(self.inner)
|
||||||
|
|
||||||
relax(self) = Class(_relax(self.inner))
|
relax(self) = Class(_relax(self.inner))
|
||||||
|
|
||||||
set_warm_starts(self, var_names, var_values, stats = nothing) =
|
set_warm_starts(self, var_names, var_values, stats=nothing) =
|
||||||
_set_warm_starts(self.inner, from_str_array(var_names), var_values, stats)
|
_set_warm_starts(self.inner, from_str_array(var_names), var_values, stats)
|
||||||
|
|
||||||
write(self, filename) = _write(self.inner, filename)
|
write(self, filename) = _write(self.inner, filename)
|
||||||
|
|
||||||
|
function set_cuts(self, cuts)
|
||||||
|
self.inner.ext[:miplearn].aot_cuts = cuts
|
||||||
|
end
|
||||||
end
|
end
|
||||||
copy!(JumpModel, Class)
|
copy!(JumpModel, Class)
|
||||||
end
|
end
|
||||||
|
|||||||
@@ -15,6 +15,7 @@ Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
|
|||||||
MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68"
|
MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68"
|
||||||
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
|
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
|
||||||
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
|
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
|
||||||
|
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
|
||||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||||
|
|
||||||
[compat]
|
[compat]
|
||||||
|
|||||||
BIN
test/fixtures/bell5.h5
vendored
BIN
test/fixtures/bell5.h5
vendored
Binary file not shown.
BIN
test/fixtures/stab-n50-00000.h5
vendored
Normal file
BIN
test/fixtures/stab-n50-00000.h5
vendored
Normal file
Binary file not shown.
BIN
test/fixtures/stab-n50-00000.pkl.gz
vendored
Normal file
BIN
test/fixtures/stab-n50-00000.pkl.gz
vendored
Normal file
Binary file not shown.
@@ -16,10 +16,12 @@ FIXTURES = "$BASEDIR/../fixtures"
|
|||||||
include("fixtures.jl")
|
include("fixtures.jl")
|
||||||
|
|
||||||
include("BB/test_bb.jl")
|
include("BB/test_bb.jl")
|
||||||
|
include("components/test_cuts.jl")
|
||||||
include("Cuts/BlackBox/test_cplex.jl")
|
include("Cuts/BlackBox/test_cplex.jl")
|
||||||
include("problems/test_setcover.jl")
|
include("problems/test_setcover.jl")
|
||||||
include("test_io.jl")
|
include("problems/test_stab.jl")
|
||||||
include("solvers/test_jump.jl")
|
include("solvers/test_jump.jl")
|
||||||
|
include("test_io.jl")
|
||||||
include("test_usage.jl")
|
include("test_usage.jl")
|
||||||
|
|
||||||
function runtests()
|
function runtests()
|
||||||
@@ -27,17 +29,18 @@ function runtests()
|
|||||||
@testset "BB" begin
|
@testset "BB" begin
|
||||||
test_bb()
|
test_bb()
|
||||||
end
|
end
|
||||||
# test_cuts_blackbox_cplex()
|
|
||||||
test_io()
|
test_io()
|
||||||
test_problems_setcover()
|
test_problems_setcover()
|
||||||
|
test_problems_stab()
|
||||||
test_solvers_jump()
|
test_solvers_jump()
|
||||||
test_usage()
|
test_usage()
|
||||||
|
test_cuts()
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
function format()
|
function format()
|
||||||
JuliaFormatter.format(BASEDIR, verbose = true)
|
JuliaFormatter.format(BASEDIR, verbose=true)
|
||||||
JuliaFormatter.format("$BASEDIR/../../src", verbose = true)
|
JuliaFormatter.format("$BASEDIR/../../src", verbose=true)
|
||||||
return
|
return
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|||||||
45
test/src/components/test_cuts.jl
Normal file
45
test/src/components/test_cuts.jl
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using SCIP
|
||||||
|
|
||||||
|
function gen_stab()
|
||||||
|
np = pyimport("numpy")
|
||||||
|
uniform = pyimport("scipy.stats").uniform
|
||||||
|
randint = pyimport("scipy.stats").randint
|
||||||
|
np.random.seed(42)
|
||||||
|
gen = MaxWeightStableSetGenerator(
|
||||||
|
w=uniform(10.0, scale=1.0),
|
||||||
|
n=randint(low=50, high=51),
|
||||||
|
p=uniform(loc=0.5, scale=0.0),
|
||||||
|
fix_graph=true,
|
||||||
|
)
|
||||||
|
data = gen.generate(1)
|
||||||
|
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="stab-n50-")
|
||||||
|
collector = BasicCollector(write_mps=false)
|
||||||
|
collector.collect(
|
||||||
|
data_filenames,
|
||||||
|
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
|
||||||
|
progress=true,
|
||||||
|
verbose=true,
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
function test_cuts()
|
||||||
|
data_filenames = ["$BASEDIR/../fixtures/stab-n50-0000$i.pkl.gz" for i in 0:0]
|
||||||
|
clf = pyimport("sklearn.neighbors").KNeighborsClassifier(n_neighbors=1)
|
||||||
|
extractor = H5FieldsExtractor(
|
||||||
|
instance_fields=["static_var_obj_coeffs"],
|
||||||
|
)
|
||||||
|
comp = MemorizingCutsComponent(clf=clf, extractor=extractor)
|
||||||
|
solver = LearningSolver(components=[comp])
|
||||||
|
solver.fit(data_filenames)
|
||||||
|
@show comp.n_features_
|
||||||
|
@show comp.n_targets_
|
||||||
|
stats = solver.optimize(
|
||||||
|
data_filenames[1],
|
||||||
|
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
|
||||||
|
)
|
||||||
|
@test stats["Cuts: AOT"] > 0
|
||||||
|
end
|
||||||
@@ -14,5 +14,5 @@ function fixture_setcover_data()
|
|||||||
end
|
end
|
||||||
|
|
||||||
function fixture_setcover_model()
|
function fixture_setcover_model()
|
||||||
return build_setcover_model(fixture_setcover_data())
|
return build_setcover_model_jump(fixture_setcover_data())
|
||||||
end
|
end
|
||||||
|
|||||||
@@ -51,7 +51,7 @@ function test_problems_setcover_model()
|
|||||||
)
|
)
|
||||||
|
|
||||||
h5 = H5File(tempname(), "w")
|
h5 = H5File(tempname(), "w")
|
||||||
model = build_setcover_model(data)
|
model = build_setcover_model_jump(data)
|
||||||
model.extract_after_load(h5)
|
model.extract_after_load(h5)
|
||||||
model.optimize()
|
model.optimize()
|
||||||
model.extract_after_mip(h5)
|
model.extract_after_mip(h5)
|
||||||
|
|||||||
27
test/src/problems/test_stab.jl
Normal file
27
test/src/problems/test_stab.jl
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
using PyCall
|
||||||
|
using SCIP
|
||||||
|
|
||||||
|
function test_problems_stab()
|
||||||
|
test_problems_stab_1()
|
||||||
|
test_problems_stab_2()
|
||||||
|
end
|
||||||
|
|
||||||
|
function test_problems_stab_1()
|
||||||
|
nx = pyimport("networkx")
|
||||||
|
data = MaxWeightStableSetData(
|
||||||
|
graph=nx.gnp_random_graph(25, 0.5, seed=42),
|
||||||
|
weights=repeat([1.0], 25),
|
||||||
|
)
|
||||||
|
h5 = H5File(tempname(), "w")
|
||||||
|
model = build_stab_model_jump(data, optimizer=SCIP.Optimizer)
|
||||||
|
model.extract_after_load(h5)
|
||||||
|
model.optimize()
|
||||||
|
model.extract_after_mip(h5)
|
||||||
|
@test h5.get_scalar("mip_obj_value") == -6
|
||||||
|
@test h5.get_scalar("mip_cuts")[1:20] == "[[0,8,11,13],[0,8,13"
|
||||||
|
h5.close()
|
||||||
|
end
|
||||||
@@ -29,13 +29,13 @@ function test_usage()
|
|||||||
|
|
||||||
@debug "Collecting training data..."
|
@debug "Collecting training data..."
|
||||||
bc = BasicCollector()
|
bc = BasicCollector()
|
||||||
bc.collect(data_filenames, build_setcover_model)
|
bc.collect(data_filenames, build_setcover_model_jump)
|
||||||
|
|
||||||
@debug "Training models..."
|
@debug "Training models..."
|
||||||
solver.fit(data_filenames)
|
solver.fit(data_filenames)
|
||||||
|
|
||||||
@debug "Solving model..."
|
@debug "Solving model..."
|
||||||
solver.optimize(data_filenames[1], build_setcover_model)
|
solver.optimize(data_filenames[1], build_setcover_model_jump)
|
||||||
|
|
||||||
@debug "Checking solution..."
|
@debug "Checking solution..."
|
||||||
h5 = H5File(h5_filenames[1])
|
h5 = H5File(h5_filenames[1])
|
||||||
|
|||||||
Reference in New Issue
Block a user