Make python classes available in Julia

This commit is contained in:
2023-03-22 09:23:20 -05:00
parent 117ed8d4cd
commit dabcfef00f
15 changed files with 209 additions and 34 deletions

View File

@@ -4,6 +4,7 @@ authors = ["Alinson S. Xavier <git@axavier.org>"]
version = "0.1.0"
[deps]
Glob = "c27321d9-0574-5035-807b-f59d2c89b15c"
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"

BIN
test/fixtures/bell5.h5 vendored

Binary file not shown.

View File

@@ -4,21 +4,26 @@ using Test
using Logging
using JuliaFormatter
using HiGHS
using Glob
BASEDIR = dirname(@__FILE__)
FIXTURES = "$BASEDIR/../fixtures"
include("fixtures.jl")
include("Cuts/BlackBox/test_cplex.jl")
include("problems/test_setcover.jl")
include("test_h5.jl")
include("test_io.jl")
include("solvers/test_jump.jl")
include("test_usage.jl")
function runtests()
@testset "MIPLearn" begin
test_cuts_blackbox_cplex()
test_h5()
test_io()
test_problems_setcover()
test_solvers_jump()
test_usage()
end
end

14
test/src/fixtures.jl Normal file
View File

@@ -0,0 +1,14 @@
function fixture_setcover_data()
return SetCoverData(
costs = [5, 10, 12, 6, 8],
incidence_matrix = [
1 0 0 1 0
1 1 0 0 0
0 0 1 1 1
],
)
end
function fixture_setcover_model()
return build_setcover_model(fixture_setcover_data())
end

View File

@@ -1,18 +1,6 @@
using JuMP
import MIPLearn: from_str_array, to_str_array
function build_model()
data = SetCoverData(
costs = [5, 10, 12, 6, 8],
incidence_matrix = [
1 0 0 1 0
1 1 0 0 0
0 0 1 1 1
],
)
return build_setcover_model(data)
end
function test_solvers_jump()
test_solvers_jump_extract()
test_solvers_jump_add_constrs()
@@ -51,7 +39,7 @@ function test_solvers_jump_extract()
@test all(actual .≈ expected)
end
model = build_model()
model = fixture_setcover_model()
model.extract_after_load(h5)
test_sparse(
"static_constr_lhs",
@@ -106,7 +94,7 @@ end
function test_solvers_jump_add_constrs()
h5 = H5File(tempname(), "w")
model = build_model()
model = fixture_setcover_model()
model.extract_after_load(h5)
model.add_constrs(
to_str_array(["x[2]", "x[3]"]),
@@ -124,12 +112,9 @@ end
function test_solvers_jump_fix_vars()
h5 = H5File(tempname(), "w")
model = build_model()
model = fixture_setcover_model()
model.extract_after_load(h5)
model.fix_variables(
to_str_array(["x[2]", "x[3]"]),
[0, 0],
)
model.fix_variables(to_str_array(["x[2]", "x[3]"]), [0, 0])
model.optimize()
model.extract_after_mip(h5)
@test all(h5.get_array("mip_var_values") .≈ [1, 0, 0, 0, 1])
@@ -138,7 +123,7 @@ end
function test_solvers_jump_warm_starts()
# TODO: Check presence of warm start on log file
h5 = H5File(tempname(), "w")
model = build_model()
model = fixture_setcover_model()
model.extract_after_load(h5)
model.set_warm_starts(
to_str_array(["x[0]", "x[1]", "x[2]", "x[3]", "x[4]"]),
@@ -149,8 +134,8 @@ end
function test_solvers_jump_write()
mps_filename = "$(tempname()).mps"
model = build_model()
model = fixture_setcover_model()
model.write(mps_filename)
@test isfile(mps_filename)
rm(mps_filename)
end
end

View File

@@ -1,5 +1,18 @@
using MIPLearn
function test_io()
test_pkl_gz()
test_h5()
end
function test_pkl_gz()
original = Dict("K1" => 1, "K2" => [0, 1, 2], "K3" => "Hello")
dirname = tempdir()
MIPLearn.write_pkl_gz([original], dirname)
recovered = MIPLearn.read_pkl_gz("$dirname/00000.pkl.gz")
@test recovered == original
end
function test_h5()
h5 = H5File(tempname(), "w")
_test_roundtrip_scalar(h5, "A")

40
test/src/test_usage.jl Normal file
View File

@@ -0,0 +1,40 @@
function test_usage()
LogisticRegression = pyimport("sklearn.linear_model").LogisticRegression
@debug "Generating data files..."
dirname = tempdir()
data = [fixture_setcover_data()]
data_filenames = write_pkl_gz(data, dirname)
h5_filenames = ["$(f).h5" for f in data_filenames]
@debug "Setting up LearningSolver..."
solver = LearningSolver(
components = [
IndependentVarsPrimalComponent(
base_clf = SingleClassFix(
MinProbabilityClassifier(
base_clf = LogisticRegression(),
thresholds = [0.95, 0.95],
),
),
extractor = AlvLouWeh2017Extractor(),
action = SetWarmStart(),
),
],
)
@debug "Collecting training data..."
bc = BasicCollector()
bc.collect(data_filenames, build_setcover_model)
@debug "Training models..."
solver.fit(data_filenames)
@debug "Solving model..."
solver.optimize(data_filenames[1], build_setcover_model)
@debug "Checking solution..."
h5 = H5File(h5_filenames[1])
@test h5.get_scalar("mip_obj_value") == 11.0
end