Make python classes available in Julia

master
Alinson S. Xavier 3 years ago
parent 117ed8d4cd
commit dabcfef00f
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

@ -7,15 +7,24 @@ module MIPLearn
using PyCall
using SparseArrays
include("problems/setcover.jl")
include("Cuts/BlackBox/cplex.jl")
include("collectors.jl")
include("components.jl")
include("extractors.jl")
include("io.jl")
include("problems/setcover.jl")
include("solvers/jump.jl")
include("Cuts/BlackBox/cplex.jl")
include("solvers/learning.jl")
function __init__()
__init_problems_setcover__()
__init_collectors__()
__init_components__()
__init_extractors__()
__init_io__()
__init_problems_setcover__()
__init_solvers_jump__()
__init_solvers_learning__()
end
end # module

@ -0,0 +1,7 @@
global BasicCollector = PyNULL()
function __init_collectors__()
copy!(BasicCollector, pyimport("miplearn.collectors.basic").BasicCollector)
end
export BasicCollector

@ -0,0 +1,65 @@
global MinProbabilityClassifier = PyNULL()
global SingleClassFix = PyNULL()
global PrimalComponentAction = PyNULL()
global SetWarmStart = PyNULL()
global FixVariables = PyNULL()
global EnforceProximity = PyNULL()
global ExpertPrimalComponent = PyNULL()
global IndependentVarsPrimalComponent = PyNULL()
global JointVarsPrimalComponent = PyNULL()
global SolutionConstructor = PyNULL()
global MemorizingPrimalComponent = PyNULL()
global SelectTopSolutions = PyNULL()
global MergeTopSolutions = PyNULL()
function __init_components__()
copy!(
MinProbabilityClassifier,
pyimport("miplearn.classifiers.minprob").MinProbabilityClassifier,
)
copy!(SingleClassFix, pyimport("miplearn.classifiers.singleclass").SingleClassFix)
copy!(
PrimalComponentAction,
pyimport("miplearn.components.primal.actions").PrimalComponentAction,
)
copy!(SetWarmStart, pyimport("miplearn.components.primal.actions").SetWarmStart)
copy!(FixVariables, pyimport("miplearn.components.primal.actions").FixVariables)
copy!(EnforceProximity, pyimport("miplearn.components.primal.actions").EnforceProximity)
copy!(
ExpertPrimalComponent,
pyimport("miplearn.components.primal.expert").ExpertPrimalComponent,
)
copy!(
IndependentVarsPrimalComponent,
pyimport("miplearn.components.primal.indep").IndependentVarsPrimalComponent,
)
copy!(
JointVarsPrimalComponent,
pyimport("miplearn.components.primal.joint").JointVarsPrimalComponent,
)
copy!(
SolutionConstructor,
pyimport("miplearn.components.primal.mem").SolutionConstructor,
)
copy!(
MemorizingPrimalComponent,
pyimport("miplearn.components.primal.mem").MemorizingPrimalComponent,
)
copy!(SelectTopSolutions, pyimport("miplearn.components.primal.mem").SelectTopSolutions)
copy!(MergeTopSolutions, pyimport("miplearn.components.primal.mem").MergeTopSolutions)
end
export MinProbabilityClassifier,
SingleClassFix,
PrimalComponentAction,
SetWarmStart,
FixVariables,
EnforceProximity,
ExpertPrimalComponent,
IndependentVarsPrimalComponent,
JointVarsPrimalComponent,
SolutionConstructor,
MemorizingPrimalComponent,
SelectTopSolutions,
MergeTopSolutions

@ -0,0 +1,18 @@
global FeaturesExtractor = PyNULL()
global AlvLouWeh2017Extractor = PyNULL()
global DummyExtractor = PyNULL()
global H5FieldsExtractor = PyNULL()
function __init_extractors__()
copy!(FeaturesExtractor, pyimport("miplearn.extractors.abstract").FeaturesExtractor)
copy!(
AlvLouWeh2017Extractor,
pyimport("miplearn.extractors.AlvLouWeh2017").AlvLouWeh2017Extractor,
)
copy!(DummyExtractor, pyimport("miplearn.extractors.dummy").DummyExtractor)
copy!(H5FieldsExtractor, pyimport("miplearn.extractors.fields").H5FieldsExtractor)
end
export FeaturesExtractor, AlvLouWeh2017Extractor, DummyExtractor, H5FieldsExtractor

@ -1,4 +1,6 @@
global H5File = PyNULL()
global write_pkl_gz = PyNULL()
global read_pkl_gz = PyNULL()
to_str_array(values) = py"to_str_array"(values)
@ -6,6 +8,8 @@ from_str_array(values) = py"from_str_array"(values)
function __init_io__()
copy!(H5File, pyimport("miplearn.h5").H5File)
copy!(write_pkl_gz, pyimport("miplearn.io").write_pkl_gz)
copy!(read_pkl_gz, pyimport("miplearn.io").read_pkl_gz)
py"""
import numpy as np
@ -32,4 +36,4 @@ function PyObject(m::SparseMatrixCSC)
).tocoo()
end
export H5File
export H5File, write_pkl_gz, read_pkl_gz

@ -1,15 +1,18 @@
global SetCoverData = PyNULL()
global SetCoverGenerator = PyNULL()
using JuMP
using HiGHS
global SetCoverData = PyNULL()
global SetCoverGenerator = PyNULL()
function __init_problems_setcover__()
copy!(SetCoverData, pyimport("miplearn.problems.setcover").SetCoverData)
copy!(SetCoverGenerator, pyimport("miplearn.problems.setcover").SetCoverGenerator)
end
function build_setcover_model(data; optimizer = HiGHS.Optimizer)
function build_setcover_model(data::Any; optimizer = HiGHS.Optimizer)
if data isa String
data = read_pkl_gz(data)
end
model = Model(optimizer)
set_silent(model)
n_elements, n_sets = size(data.incidence_matrix)

@ -250,12 +250,14 @@ end
function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
vars = [variable_by_name(model, v) for v in var_names]
for (i, var) in enumerate(vars)
fix(var, var_values[i], force=true)
fix(var, var_values[i], force = true)
end
end
function _optimize(model::JuMP.Model)
optimize!(model)
flush(stdout)
Libc.flush_cstdio()
end
function _relax(model::JuMP.Model)
@ -325,3 +327,5 @@ function __init_solvers_jump__()
end
copy!(JumpModel, Class)
end
export JumpModel

@ -0,0 +1,7 @@
global LearningSolver = PyNULL()
function __init_solvers_learning__()
copy!(LearningSolver, pyimport("miplearn.solvers.learning").LearningSolver)
end
export LearningSolver

@ -4,6 +4,7 @@ authors = ["Alinson S. Xavier <git@axavier.org>"]
version = "0.1.0"
[deps]
Glob = "c27321d9-0574-5035-807b-f59d2c89b15c"
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"

Binary file not shown.

@ -4,21 +4,26 @@ using Test
using Logging
using JuliaFormatter
using HiGHS
using Glob
BASEDIR = dirname(@__FILE__)
FIXTURES = "$BASEDIR/../fixtures"
include("fixtures.jl")
include("Cuts/BlackBox/test_cplex.jl")
include("problems/test_setcover.jl")
include("test_h5.jl")
include("test_io.jl")
include("solvers/test_jump.jl")
include("test_usage.jl")
function runtests()
@testset "MIPLearn" begin
test_cuts_blackbox_cplex()
test_h5()
test_io()
test_problems_setcover()
test_solvers_jump()
test_usage()
end
end

@ -0,0 +1,14 @@
function fixture_setcover_data()
return SetCoverData(
costs = [5, 10, 12, 6, 8],
incidence_matrix = [
1 0 0 1 0
1 1 0 0 0
0 0 1 1 1
],
)
end
function fixture_setcover_model()
return build_setcover_model(fixture_setcover_data())
end

@ -1,18 +1,6 @@
using JuMP
import MIPLearn: from_str_array, to_str_array
function build_model()
data = SetCoverData(
costs = [5, 10, 12, 6, 8],
incidence_matrix = [
1 0 0 1 0
1 1 0 0 0
0 0 1 1 1
],
)
return build_setcover_model(data)
end
function test_solvers_jump()
test_solvers_jump_extract()
test_solvers_jump_add_constrs()
@ -51,7 +39,7 @@ function test_solvers_jump_extract()
@test all(actual .≈ expected)
end
model = build_model()
model = fixture_setcover_model()
model.extract_after_load(h5)
test_sparse(
"static_constr_lhs",
@ -106,7 +94,7 @@ end
function test_solvers_jump_add_constrs()
h5 = H5File(tempname(), "w")
model = build_model()
model = fixture_setcover_model()
model.extract_after_load(h5)
model.add_constrs(
to_str_array(["x[2]", "x[3]"]),
@ -124,12 +112,9 @@ end
function test_solvers_jump_fix_vars()
h5 = H5File(tempname(), "w")
model = build_model()
model = fixture_setcover_model()
model.extract_after_load(h5)
model.fix_variables(
to_str_array(["x[2]", "x[3]"]),
[0, 0],
)
model.fix_variables(to_str_array(["x[2]", "x[3]"]), [0, 0])
model.optimize()
model.extract_after_mip(h5)
@test all(h5.get_array("mip_var_values") .≈ [1, 0, 0, 0, 1])
@ -138,7 +123,7 @@ end
function test_solvers_jump_warm_starts()
# TODO: Check presence of warm start on log file
h5 = H5File(tempname(), "w")
model = build_model()
model = fixture_setcover_model()
model.extract_after_load(h5)
model.set_warm_starts(
to_str_array(["x[0]", "x[1]", "x[2]", "x[3]", "x[4]"]),
@ -149,8 +134,8 @@ end
function test_solvers_jump_write()
mps_filename = "$(tempname()).mps"
model = build_model()
model = fixture_setcover_model()
model.write(mps_filename)
@test isfile(mps_filename)
rm(mps_filename)
end
end

@ -1,5 +1,18 @@
using MIPLearn
function test_io()
test_pkl_gz()
test_h5()
end
function test_pkl_gz()
original = Dict("K1" => 1, "K2" => [0, 1, 2], "K3" => "Hello")
dirname = tempdir()
MIPLearn.write_pkl_gz([original], dirname)
recovered = MIPLearn.read_pkl_gz("$dirname/00000.pkl.gz")
@test recovered == original
end
function test_h5()
h5 = H5File(tempname(), "w")
_test_roundtrip_scalar(h5, "A")

@ -0,0 +1,40 @@
function test_usage()
LogisticRegression = pyimport("sklearn.linear_model").LogisticRegression
@debug "Generating data files..."
dirname = tempdir()
data = [fixture_setcover_data()]
data_filenames = write_pkl_gz(data, dirname)
h5_filenames = ["$(f).h5" for f in data_filenames]
@debug "Setting up LearningSolver..."
solver = LearningSolver(
components = [
IndependentVarsPrimalComponent(
base_clf = SingleClassFix(
MinProbabilityClassifier(
base_clf = LogisticRegression(),
thresholds = [0.95, 0.95],
),
),
extractor = AlvLouWeh2017Extractor(),
action = SetWarmStart(),
),
],
)
@debug "Collecting training data..."
bc = BasicCollector()
bc.collect(data_filenames, build_setcover_model)
@debug "Training models..."
solver.fit(data_filenames)
@debug "Solving model..."
solver.optimize(data_filenames[1], build_setcover_model)
@debug "Checking solution..."
h5 = H5File(h5_filenames[1])
@test h5.get_scalar("mip_obj_value") == 11.0
end
Loading…
Cancel
Save