mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 16:38:51 -06:00
Re-add BB module
This commit is contained in:
@@ -4,6 +4,8 @@ authors = ["Alinson S. Xavier <git@axavier.org>"]
|
||||
version = "0.1.0"
|
||||
|
||||
[deps]
|
||||
CPLEX = "a076750e-1247-5638-91d2-ce28b192dca0"
|
||||
Clp = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
|
||||
Glob = "c27321d9-0574-5035-807b-f59d2c89b15c"
|
||||
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
|
||||
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
|
||||
|
||||
BIN
test/fixtures/bell5.h5
vendored
BIN
test/fixtures/bell5.h5
vendored
Binary file not shown.
134
test/src/BB/test_bb.jl
Normal file
134
test/src/BB/test_bb.jl
Normal file
@@ -0,0 +1,134 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using Clp
|
||||
using CPLEX
|
||||
using HiGHS
|
||||
using JuMP
|
||||
using Test
|
||||
using MIPLearn.BB
|
||||
using MIPLearn
|
||||
|
||||
basepath = @__DIR__
|
||||
|
||||
function bb_run(optimizer_name, optimizer; large = true)
|
||||
@testset "Solve ($optimizer_name)" begin
|
||||
@testset "interface" begin
|
||||
filename = "$FIXTURES/danoint.mps.gz"
|
||||
|
||||
mip = BB.init(optimizer)
|
||||
BB.read!(mip, filename)
|
||||
|
||||
@test mip.sense == 1.0
|
||||
@test length(mip.int_vars) == 56
|
||||
|
||||
status, obj = BB.solve_relaxation!(mip)
|
||||
@test status == :Optimal
|
||||
@test round(obj, digits = 6) == 62.637280
|
||||
|
||||
@test BB.name(mip, mip.int_vars[1]) == "xab"
|
||||
@test BB.name(mip, mip.int_vars[2]) == "xac"
|
||||
@test BB.name(mip, mip.int_vars[3]) == "xad"
|
||||
|
||||
@test mip.int_vars_lb[1] == 0.0
|
||||
@test mip.int_vars_ub[1] == 1.0
|
||||
|
||||
vals = BB.values(mip, mip.int_vars)
|
||||
@test round(vals[1], digits = 6) == 0.046933
|
||||
@test round(vals[2], digits = 6) == 0.000841
|
||||
@test round(vals[3], digits = 6) == 0.248696
|
||||
|
||||
# Probe (up and down are feasible)
|
||||
probe_up, probe_down = BB.probe(mip, mip.int_vars[1], 0.5, 0.0, 1.0, 1_000_000)
|
||||
@test round(probe_down, digits = 6) == 62.690000
|
||||
@test round(probe_up, digits = 6) == 62.714100
|
||||
|
||||
# Fix one variable to zero
|
||||
BB.set_bounds!(mip, mip.int_vars[1:1], [0.0], [0.0])
|
||||
status, obj = BB.solve_relaxation!(mip)
|
||||
@test status == :Optimal
|
||||
@test round(obj, digits = 6) == 62.690000
|
||||
|
||||
# Fix one variable to one and another variable variable to zero
|
||||
BB.set_bounds!(mip, mip.int_vars[1:2], [1.0, 0.0], [1.0, 0.0])
|
||||
status, obj = BB.solve_relaxation!(mip)
|
||||
@test status == :Optimal
|
||||
@test round(obj, digits = 6) == 62.714777
|
||||
|
||||
# Fix all binary variables to one, making problem infeasible
|
||||
N = length(mip.int_vars)
|
||||
BB.set_bounds!(mip, mip.int_vars, ones(N), ones(N))
|
||||
status, obj = BB.solve_relaxation!(mip)
|
||||
@test status == :Infeasible
|
||||
@test obj == Inf
|
||||
|
||||
# Restore original problem
|
||||
N = length(mip.int_vars)
|
||||
BB.set_bounds!(mip, mip.int_vars, zeros(N), ones(N))
|
||||
status, obj = BB.solve_relaxation!(mip)
|
||||
@test status == :Optimal
|
||||
@test round(obj, digits = 6) == 62.637280
|
||||
end
|
||||
|
||||
@testset "varbranch" begin
|
||||
for instance in ["bell5", "vpm2"]
|
||||
for branch_rule in [
|
||||
BB.RandomBranching(),
|
||||
BB.FirstInfeasibleBranching(),
|
||||
BB.LeastInfeasibleBranching(),
|
||||
BB.MostInfeasibleBranching(),
|
||||
BB.PseudocostBranching(),
|
||||
BB.StrongBranching(),
|
||||
BB.ReliabilityBranching(),
|
||||
BB.HybridBranching(),
|
||||
BB.StrongBranching(aggregation = :min),
|
||||
BB.ReliabilityBranching(aggregation = :min, collect = true),
|
||||
]
|
||||
h5 = H5File("$FIXTURES/$instance.h5")
|
||||
mip_lower_bound = h5.get_scalar("mip_lower_bound")
|
||||
mip_upper_bound = h5.get_scalar("mip_upper_bound")
|
||||
mip_sense = h5.get_scalar("mip_sense")
|
||||
mip_primal_bound =
|
||||
mip_sense == "min" ? mip_upper_bound : mip_lower_bound
|
||||
h5.file.close()
|
||||
|
||||
mip = BB.init(optimizer)
|
||||
BB.read!(mip, "$FIXTURES/$instance.mps.gz")
|
||||
@info optimizer_name, branch_rule, instance
|
||||
@time BB.solve!(
|
||||
mip,
|
||||
initial_primal_bound = mip_primal_bound,
|
||||
print_interval = 10,
|
||||
node_limit = 100,
|
||||
branch_rule = branch_rule,
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@testset "collect" begin
|
||||
rule = BB.ReliabilityBranching(collect = true)
|
||||
BB.collect!(
|
||||
optimizer,
|
||||
"$FIXTURES/bell5.mps.gz",
|
||||
node_limit = 100,
|
||||
print_interval = 10,
|
||||
branch_rule = rule,
|
||||
)
|
||||
n_sb = rule.stats.num_strong_branch_calls
|
||||
h5 = H5File("$FIXTURES/bell5.h5")
|
||||
@test size(h5.get_array("bb_var_pseudocost_up")) == (104,)
|
||||
@test size(h5.get_array("bb_score_var_names")) == (n_sb,)
|
||||
@test size(h5.get_array("bb_score_features")) == (n_sb, 6)
|
||||
@test size(h5.get_array("bb_score_targets")) == (n_sb,)
|
||||
h5.file.close()
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function test_bb()
|
||||
@time bb_run("Clp", optimizer_with_attributes(Clp.Optimizer))
|
||||
@time bb_run("HiGHS", optimizer_with_attributes(HiGHS.Optimizer))
|
||||
@time bb_run("CPLEX", optimizer_with_attributes(CPLEX.Optimizer, "CPXPARAM_Threads" => 1))
|
||||
end
|
||||
@@ -11,6 +11,7 @@ FIXTURES = "$BASEDIR/../fixtures"
|
||||
|
||||
include("fixtures.jl")
|
||||
|
||||
include("BB/test_bb.jl")
|
||||
include("Cuts/BlackBox/test_cplex.jl")
|
||||
include("problems/test_setcover.jl")
|
||||
include("test_io.jl")
|
||||
@@ -19,6 +20,9 @@ include("test_usage.jl")
|
||||
|
||||
function runtests()
|
||||
@testset "MIPLearn" begin
|
||||
@testset "BB" begin
|
||||
test_bb()
|
||||
end
|
||||
test_cuts_blackbox_cplex()
|
||||
test_io()
|
||||
test_problems_setcover()
|
||||
|
||||
Reference in New Issue
Block a user