Remove temporary docs; apply some fixes

This commit is contained in:
2021-09-04 06:41:52 -05:00
parent 95b253429b
commit e0055f16f4
8 changed files with 153 additions and 356 deletions

View File

@@ -20,6 +20,8 @@ global UserCutsComponent = PyNULL()
global MemorySample = PyNULL()
global Hdf5Sample = PyNULL()
include("solvers/structs.jl")
include("utils/log.jl")
include("utils/exceptions.jl")
include("instance/abstract_instance.jl")

View File

@@ -9,49 +9,26 @@ mutable struct FileInstance <: Instance
py::Union{Nothing,PyCall.PyObject}
loaded::Union{Nothing,JuMPInstance}
filename::AbstractString
h5::PyCall.PyObject
sample::PyCall.PyObject
build_model::Function
mode::String
function FileInstance(filename::AbstractString, build_model::Function)::FileInstance
instance = new(nothing, nothing, filename, nothing, build_model)
function FileInstance(
filename::AbstractString,
build_model::Function;
mode::String = "a",
)::FileInstance
instance = new(nothing, nothing, filename, nothing, build_model, mode)
instance.py = PyFileInstance(instance)
instance.h5 = Hdf5Sample("$filename.h5", mode = "a")
if mode != "r" || isfile("$filename.h5")
instance.sample = Hdf5Sample("$filename.h5", mode = mode)
end
instance.filename = filename
return instance
end
end
to_model(instance::FileInstance) = to_model(instance.loaded)
get_instance_features(instance::FileInstance) = get_instance_features(instance.loaded)
get_variable_features(instance::FileInstance, names) =
get_variable_features(instance.loaded, names)
get_variable_categories(instance::FileInstance, names) =
get_variable_categories(instance.loaded, names)
get_constraint_features(instance::FileInstance, names) =
get_constraint_features(instance.loaded, names)
get_constraint_categories(instance::FileInstance, names) =
get_constraint_categories(instance.loaded, names)
find_violated_lazy_constraints(instance::FileInstance, solver) =
find_violated_lazy_constraints(instance.loaded, solver)
enforce_lazy_constraint(instance::FileInstance, solver, violation) =
enforce_lazy_constraint(instance.loaded, solver, violation)
function get_samples(instance::FileInstance)
return [instance.h5]
end
function create_sample!(instance::FileInstance)
return instance.h5
end
function load(instance::FileInstance)
function _load!(instance::FileInstance)
if instance.loaded === nothing
data = load_data(instance.filename)
instance.loaded = JuMPInstance(instance.build_model(data))
@@ -59,9 +36,59 @@ function load(instance::FileInstance)
end
function free(instance::FileInstance)
instance.loaded.samples = []
instance.loaded = nothing
GC.gc()
end
function to_model(instance::FileInstance)
_load!(instance)
return to_model(instance.loaded)
end
function get_instance_features(instance::FileInstance)
_load!(instance)
return get_instance_features(instance.loaded)
end
function get_variable_features(instance::FileInstance, names)
_load!(instance)
return get_variable_features(instance.loaded, names)
end
function get_variable_categories(instance::FileInstance, names)
_load!(instance)
return get_variable_categories(instance.loaded, names)
end
function get_constraint_features(instance::FileInstance, names)
_load!(instance)
return get_constraint_features(instance.loaded, names)
end
function get_constraint_categories(instance::FileInstance, names)
_load!(instance)
return get_constraint_categories(instance.loaded, names)
end
function find_violated_lazy_constraints(instance::FileInstance, solver)
_load!(instance)
return find_violated_lazy_constraints(instance.loaded, solver)
end
function enforce_lazy_constraint(instance::FileInstance, solver, violation)
_load!(instance)
return enforce_lazy_constraint(instance.loaded, solver, violation)
end
function get_samples(instance::FileInstance)
return [instance.sample]
end
function create_sample!(instance::FileInstance)
if instance.mode == "r"
return MemorySample()
else
return instance.sample
end
end
function save_data(filename::AbstractString, data)::Nothing
@@ -74,7 +101,49 @@ function load_data(filename::AbstractString)
end
end
function flush(instance::FileInstance) end
function load(filename::AbstractString, build_model::Function)
jldopen(filename, "r") do file
return build_model(file["data"])
end
end
function save(data::AbstractVector, dirname::String)::Nothing
mkpath(dirname)
for (i, d) in enumerate(data)
filename = joinpath(dirname, @sprintf("%06d.jld2", i))
jldsave(filename, data = d)
end
end
function solve!(
solver::LearningSolver,
filenames::Vector,
build_model::Function;
tee::Bool = false,
)
for filename in filenames
solve!(solver, filename, build_model; tee)
end
end
function fit!(
solver::LearningSolver,
filenames::Vector,
build_model::Function;
tee::Bool = false,
)
instances = [FileInstance(f, build_model) for f in filenames]
fit!(solver, instances)
end
function solve!(
solver::LearningSolver,
filename::AbstractString,
build_model::Function;
tee::Bool = false,
)
solve!(solver, FileInstance(filename, build_model); tee)
end
function __init_PyFileInstance__()
@pydef mutable struct Class <: miplearn.Instance
@@ -87,19 +156,22 @@ function __init_PyFileInstance__()
get_variable_features(self.jl, from_str_array(names))
get_variable_categories(self, names) =
to_str_array(get_variable_categories(self.jl, from_str_array(names)))
get_constraint_features(self, names) =
get_constraint_features(self.jl, from_str_array(names))
get_constraint_categories(self, names) =
to_str_array(get_constraint_categories(self.jl, from_str_array(names)))
get_samples(self) = get_samples(self.jl)
create_sample(self) = create_sample!(self.jl)
load(self) = load(self.jl)
free(self) = free(self.jl)
flush(self) = flush(self.jl)
find_violated_lazy_constraints(self, solver, _) =
find_violated_lazy_constraints(self.jl, solver)
enforce_lazy_constraint(self, solver, _, violation) =
enforce_lazy_constraint(self.jl, solver, violation)
free(self) = free(self.jl)
# FIXME: The two functions below are disabled because they break lazy loading
# of FileInstance.
# get_constraint_features(self, names) =
# get_constraint_features(self.jl, from_str_array(names))
# get_constraint_categories(self, names) =
# to_str_array(get_constraint_categories(self.jl, from_str_array(names)))
end
copy!(PyFileInstance, Class)
end

View File

@@ -5,41 +5,26 @@
using JuMP
import JSON
mutable struct JuMPInstance <: Instance
py::Union{Nothing,PyCall.PyObject}
model::Union{Nothing,JuMP.Model}
mps::Union{Nothing,Vector{UInt8}}
ext::AbstractDict
samples::Vector{PyCall.PyObject}
Base.@kwdef mutable struct JuMPInstance <: Instance
py::Union{Nothing,PyCall.PyObject} = nothing
model::Union{Nothing,JuMP.Model} = nothing
samples::Vector{PyCall.PyObject} = []
function JuMPInstance(model::JuMP.Model)::JuMPInstance
init_miplearn_ext(model)
instance = new(nothing, model, nothing, model.ext[:miplearn], [])
instance = new(nothing, model, [])
py = PyJuMPInstance(instance)
instance.py = py
return instance
end
function JuMPInstance(mps::Vector{UInt8}, ext::AbstractDict)
"instance_features" in keys(ext) || error("provided ext is not initialized")
instance = new(nothing, nothing, mps, ext, [])
instance.py = PyJuMPInstance(instance)
return instance
end
end
function to_model(instance::JuMPInstance)::JuMP.Model
if instance.model === nothing
mps_filename = "$(tempname()).mps.gz"
write(mps_filename, instance.mps)
instance.model = read_from_file(mps_filename)
instance.model.ext[:miplearn] = instance.ext
end
return instance.model
end
function get_instance_features(instance::JuMPInstance)::Union{Vector{Float64},Nothing}
return instance.ext["instance_features"]
return instance.model.ext[:miplearn]["instance_features"]
end
function _concat_features(dict, names)::Matrix{Float64}
@@ -58,22 +43,22 @@ function get_variable_features(
instance::JuMPInstance,
names::Vector{String},
)::Matrix{Float64}
return _concat_features(instance.ext["variable_features"], names)
return _concat_features(instance.model.ext[:miplearn]["variable_features"], names)
end
function get_variable_categories(instance::JuMPInstance, names::Vector{String})
return _concat_categories(instance.ext["variable_categories"], names)
return _concat_categories(instance.model.ext[:miplearn]["variable_categories"], names)
end
function get_constraint_features(
instance::JuMPInstance,
names::Vector{String},
)::Matrix{Float64}
return _concat_features(instance.ext["constraint_features"], names)
return _concat_features(instance.model.ext[:miplearn]["constraint_features"], names)
end
function get_constraint_categories(instance::JuMPInstance, names::Vector{String})
return _concat_categories(instance.ext["constraint_categories"], names)
return _concat_categories(instance.model.ext[:miplearn]["constraint_categories"], names)
end
get_samples(instance::JuMPInstance) = instance.samples
@@ -96,6 +81,10 @@ function enforce_lazy_constraint(instance::JuMPInstance, solver, violation::Stri
instance.model.ext[:miplearn]["lazy_enforce_cb"](instance.model, solver.data, violation)
end
function solve!(solver::LearningSolver, model::JuMP.Model; kwargs...)
solve!(solver, JuMPInstance(model); kwargs...)
end
function __init_PyJuMPInstance__()
@pydef mutable struct Class <: miplearn.Instance
function __init__(self, jl)

View File

@@ -83,7 +83,7 @@ function _update_solution!(data::JuMPSolverData)
try
data.sensitivity_report = lp_sensitivity_report(data.model)
catch
@warn("Sensitivity analysis is unavailable; ignoring")
@warn "Sensitivity analysis is unavailable; ignoring" maxlog=1
end
basis_status_supported = true
@@ -99,7 +99,7 @@ function _update_solution!(data::JuMPSolverData)
data.basis_status[constr] =
MOI.get(data.model, MOI.ConstraintBasisStatus(), constr)
catch
@warn "Basis status is unavailable; ignoring"
@warn "Basis status is unavailable; ignoring" maxlog=1
basis_status_supported = false
data.basis_status = Dict()
end
@@ -240,6 +240,9 @@ function solve(
wallclock_time += @elapsed begin
log *= _optimize_and_capture_output!(model, tee = tee)
end
if is_infeasible(data)
break
end
if iteration_cb !== nothing
iteration_cb() || break
else

View File

@@ -6,12 +6,6 @@ using Distributed
using JLD2
struct LearningSolver
py::PyCall.PyObject
optimizer_factory::Any
end
function LearningSolver(
optimizer_factory;
components = nothing,
@@ -49,42 +43,12 @@ function solve!(
)
end
function fit!(solver::LearningSolver, instances::Vector{<:Instance})
@python_call solver.py.fit([instance.py for instance in instances])
return
end
function _solve(solver_filename, instance_filename; discard_output::Bool)
@info "solve $instance_filename"
solver = load_solver(solver_filename)
solver.py._silence_miplearn_logger()
stats = solve!(solver, FileInstance(instance_filename), discard_output = discard_output)
solver.py._restore_miplearn_logger()
GC.gc()
@info "solve $instance_filename [done]"
return stats
end
function parallel_solve!(
solver::LearningSolver,
instances::Vector{FileInstance};
discard_output::Bool = false,
)
instance_filenames = [instance.filename for instance in instances]
solver_filename = tempname()
save(solver_filename, solver)
return pmap(
instance_filename ->
_solve(solver_filename, instance_filename, discard_output = discard_output),
instance_filenames,
on_error = identity,
)
end
function save(filename::AbstractString, solver::LearningSolver)
internal_solver = solver.py.internal_solver
internal_solver_prototype = solver.py.internal_solver_prototype

8
src/solvers/structs.jl Normal file
View File

@@ -0,0 +1,8 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
struct LearningSolver
py::PyCall.PyObject
optimizer_factory::Any
end

View File

@@ -22,15 +22,18 @@ mutable struct BenchmarkRunner
end
end
function parallel_solve!(
function solve!(
runner::BenchmarkRunner,
instances::Vector{FileInstance};
n_trials::Int = 3,
n_trials::Int = 1,
)::Nothing
instances = repeat(instances, n_trials)
for (solver_name, solver) in runner.solvers
@info "benchmark $solver_name"
stats = parallel_solve!(solver, instances, discard_output = true)
stats = [
solve!(solver, instance, discard_output = true, tee = true) for
instance in instances
]
for (i, s) in enumerate(stats)
s["Solver"] = solver_name
s["Instance"] = instances[i].filename
@@ -54,4 +57,4 @@ function write_csv!(runner::BenchmarkRunner, filename::AbstractString)::Nothing
return
end
export BenchmarkRunner, parallel_solve!, fit!, write_csv!
export BenchmarkRunner, solve!, fit!, write_csv!