mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-06 08:28:52 -06:00
Implement FileInstance
This commit is contained in:
@@ -16,9 +16,10 @@ miplearn = pyimport("miplearn")
|
||||
|
||||
include("utils/log.jl")
|
||||
include("utils/exceptions.jl")
|
||||
include("instance/jump.jl")
|
||||
include("solvers/jump.jl")
|
||||
include("solvers/learning.jl")
|
||||
include("solvers/macros.jl")
|
||||
include("instance/jump.jl")
|
||||
include("instance/file.jl")
|
||||
|
||||
end # module
|
||||
|
||||
@@ -2,30 +2,66 @@
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
struct FileInstance
|
||||
filename::AbstractString
|
||||
loaded::Union{Nothing,JuMPInstance}
|
||||
|
||||
@pydef mutable struct PyFileInstance <: miplearn.Instance
|
||||
function __init__(self, filename)
|
||||
self.filename = filename
|
||||
self.loaded = nothing
|
||||
self.samples = nothing
|
||||
end
|
||||
|
||||
function to_model(self)
|
||||
return self.loaded.py.to_model()
|
||||
end
|
||||
|
||||
function get_instance_features(self)
|
||||
return self.loaded.py.get_instance_features()
|
||||
end
|
||||
|
||||
function get_variable_features(self, var_name)
|
||||
return self.loaded.py.get_variable_features(var_name)
|
||||
end
|
||||
|
||||
function get_variable_category(self, var_name)
|
||||
return self.loaded.py.get_variable_category(var_name)
|
||||
end
|
||||
|
||||
function get_constraint_features(self, cname)
|
||||
return self.loaded.py.get_constraint_features(cname)
|
||||
end
|
||||
|
||||
function get_constraint_category(self, cname)
|
||||
return self.loaded.py.get_constraint_category(cname)
|
||||
end
|
||||
|
||||
function load(self)
|
||||
if self.loaded === nothing
|
||||
self.loaded = load_jump_instance(self.filename)
|
||||
self.samples = self.loaded.py.samples
|
||||
end
|
||||
end
|
||||
|
||||
function free(self)
|
||||
self.loaded = nothing
|
||||
self.samples = nothing
|
||||
end
|
||||
|
||||
function flush(self)
|
||||
self.loaded.py.samples = self.samples
|
||||
save(self.filename, self.loaded)
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
function FileInstance(filename::AbstractString)::FileInstance
|
||||
return FileInstance(
|
||||
filename,
|
||||
nothing,
|
||||
)
|
||||
struct FileInstance <: Instance
|
||||
py::PyCall.PyObject
|
||||
end
|
||||
|
||||
|
||||
function load!(instance::FileInstance)
|
||||
instance.loaded = load_jump_instance(instance.filename)
|
||||
function FileInstance(filename)::FileInstance
|
||||
filename isa AbstractString || error("filename should be a string. Found $(typeof(filename)) instead.")
|
||||
return FileInstance(PyFileInstance(filename))
|
||||
end
|
||||
|
||||
|
||||
function free!(instance::FileInstance)
|
||||
instance.loaded = nothing
|
||||
end
|
||||
|
||||
|
||||
function flush!(instance::FileInstance)
|
||||
save(instance.filename, instance.loaded)
|
||||
end
|
||||
export FileInstance
|
||||
|
||||
@@ -47,7 +47,7 @@ using JLD2
|
||||
end
|
||||
|
||||
|
||||
struct JuMPInstance
|
||||
struct JuMPInstance <: Instance
|
||||
py::PyCall.PyObject
|
||||
model::Model
|
||||
end
|
||||
@@ -63,80 +63,88 @@ end
|
||||
|
||||
|
||||
function save(filename::AbstractString, instance::JuMPInstance)::Nothing
|
||||
# Convert JuMP model to MPS
|
||||
mps_filename = "$(tempname()).mps.gz"
|
||||
write_to_file(instance.model, mps_filename)
|
||||
mps = read(mps_filename)
|
||||
@info "Writing: $filename"
|
||||
time = @elapsed begin
|
||||
# Convert JuMP model to MPS
|
||||
mps_filename = "$(tempname()).mps.gz"
|
||||
write_to_file(instance.model, mps_filename)
|
||||
mps = read(mps_filename)
|
||||
|
||||
# Pickle instance.py.samples. Ideally, we would use dumps and loads, but this
|
||||
# causes some issues with PyCall, probably due to automatic type conversions.
|
||||
py_samples_filename = tempname()
|
||||
miplearn.write_pickle_gz(instance.py.samples, py_samples_filename)
|
||||
py_samples = read(py_samples_filename)
|
||||
# Pickle instance.py.samples. Ideally, we would use dumps and loads, but this
|
||||
# causes some issues with PyCall, probably due to automatic type conversions.
|
||||
py_samples_filename = tempname()
|
||||
miplearn.write_pickle_gz(instance.py.samples, py_samples_filename, quiet=true)
|
||||
py_samples = read(py_samples_filename)
|
||||
|
||||
# Replace variable/constraint refs by names
|
||||
_to_names(d) = Dict(name(var) => value for (var, value) in d)
|
||||
ext_original = instance.model.ext[:miplearn]
|
||||
ext_names = Dict(
|
||||
:variable_features => _to_names(ext_original[:variable_features]),
|
||||
:variable_categories => _to_names(ext_original[:variable_categories]),
|
||||
:constraint_features => _to_names(ext_original[:constraint_features]),
|
||||
:constraint_categories => _to_names(ext_original[:constraint_categories]),
|
||||
:instance_features => ext_original[:instance_features],
|
||||
)
|
||||
# Replace variable/constraint refs by names
|
||||
_to_names(d) = Dict(name(var) => value for (var, value) in d)
|
||||
ext_original = instance.model.ext[:miplearn]
|
||||
ext_names = Dict(
|
||||
:variable_features => _to_names(ext_original[:variable_features]),
|
||||
:variable_categories => _to_names(ext_original[:variable_categories]),
|
||||
:constraint_features => _to_names(ext_original[:constraint_features]),
|
||||
:constraint_categories => _to_names(ext_original[:constraint_categories]),
|
||||
:instance_features => ext_original[:instance_features],
|
||||
)
|
||||
|
||||
# Generate JLD2 file
|
||||
jldsave(
|
||||
filename;
|
||||
miplearn_version=0.2,
|
||||
mps=mps,
|
||||
ext=ext_names,
|
||||
py_samples=py_samples,
|
||||
)
|
||||
# Generate JLD2 file
|
||||
jldsave(
|
||||
filename;
|
||||
miplearn_version=0.2,
|
||||
mps=mps,
|
||||
ext=ext_names,
|
||||
py_samples=py_samples,
|
||||
)
|
||||
end
|
||||
@info @sprintf("File written in %.2f seconds", time)
|
||||
return
|
||||
end
|
||||
|
||||
|
||||
function load_jump_instance(filename::AbstractString)::JuMPInstance
|
||||
jldopen(filename, "r") do file
|
||||
file["miplearn_version"] == 0.2 || error(
|
||||
"MIPLearn version 0.2 cannot read instance files generated by " *
|
||||
"version $(file["miplearn_version"])."
|
||||
)
|
||||
@info "Reading: $filename"
|
||||
instance = nothing
|
||||
time = @elapsed begin
|
||||
jldopen(filename, "r") do file
|
||||
file["miplearn_version"] == 0.2 || error(
|
||||
"MIPLearn version 0.2 cannot read instance files generated by " *
|
||||
"version $(file["miplearn_version"])."
|
||||
)
|
||||
|
||||
# Convert MPS to JuMP
|
||||
mps_filename = "$(tempname()).mps.gz"
|
||||
write(mps_filename, file["mps"])
|
||||
model = read_from_file(mps_filename)
|
||||
# Convert MPS to JuMP
|
||||
mps_filename = "$(tempname()).mps.gz"
|
||||
write(mps_filename, file["mps"])
|
||||
model = read_from_file(mps_filename)
|
||||
|
||||
# Unpickle instance.py.samples
|
||||
py_samples_filename = tempname()
|
||||
write(py_samples_filename, file["py_samples"])
|
||||
py_samples = miplearn.read_pickle_gz(py_samples_filename)
|
||||
# Unpickle instance.py.samples
|
||||
py_samples_filename = tempname()
|
||||
write(py_samples_filename, file["py_samples"])
|
||||
py_samples = miplearn.read_pickle_gz(py_samples_filename, quiet=true)
|
||||
|
||||
# Replace variable/constraint names by refs
|
||||
_to_var(model, d) = Dict(
|
||||
variable_by_name(model, varname) => value
|
||||
for (varname, value) in d
|
||||
)
|
||||
_to_constr(model, d) = Dict(
|
||||
constraint_by_name(model, cname) => value
|
||||
for (cname, value) in d
|
||||
)
|
||||
ext = file["ext"]
|
||||
model.ext[:miplearn] = Dict(
|
||||
:variable_features => _to_var(model, ext[:variable_features]),
|
||||
:variable_categories => _to_var(model, ext[:variable_categories]),
|
||||
:constraint_features => _to_constr(model, ext[:constraint_features]),
|
||||
:constraint_categories => _to_constr(model, ext[:constraint_categories]),
|
||||
:instance_features => ext[:instance_features],
|
||||
)
|
||||
# Replace variable/constraint names by refs
|
||||
_to_var(model, d) = Dict(
|
||||
variable_by_name(model, varname) => value
|
||||
for (varname, value) in d
|
||||
)
|
||||
_to_constr(model, d) = Dict(
|
||||
constraint_by_name(model, cname) => value
|
||||
for (cname, value) in d
|
||||
)
|
||||
ext = file["ext"]
|
||||
model.ext[:miplearn] = Dict(
|
||||
:variable_features => _to_var(model, ext[:variable_features]),
|
||||
:variable_categories => _to_var(model, ext[:variable_categories]),
|
||||
:constraint_features => _to_constr(model, ext[:constraint_features]),
|
||||
:constraint_categories => _to_constr(model, ext[:constraint_categories]),
|
||||
:instance_features => ext[:instance_features],
|
||||
)
|
||||
|
||||
instance = JuMPInstance(model)
|
||||
instance.py.samples = py_samples
|
||||
|
||||
return instance
|
||||
instance = JuMPInstance(model)
|
||||
instance.py.samples = py_samples
|
||||
end
|
||||
end
|
||||
@info @sprintf("File read in %.2f seconds", time)
|
||||
return instance
|
||||
end
|
||||
|
||||
|
||||
|
||||
@@ -7,20 +7,31 @@ struct LearningSolver
|
||||
end
|
||||
|
||||
|
||||
abstract type Instance
|
||||
end
|
||||
|
||||
|
||||
function LearningSolver(optimizer_factory)::LearningSolver
|
||||
py = miplearn.LearningSolver(solver=JuMPSolver(optimizer_factory))
|
||||
return LearningSolver(py)
|
||||
end
|
||||
|
||||
|
||||
function solve!(solver::LearningSolver, instance::JuMPInstance)
|
||||
return @python_call solver.py.solve(instance.py)
|
||||
function solve!(
|
||||
solver::LearningSolver,
|
||||
instance::Instance;
|
||||
tee::Bool = false,
|
||||
)
|
||||
return @python_call solver.py.solve(instance.py, tee=tee)
|
||||
end
|
||||
|
||||
|
||||
function fit!(solver::LearningSolver, instances::Vector{JuMPInstance})
|
||||
function fit!(solver::LearningSolver, instances::Vector{<:Instance})
|
||||
@python_call solver.py.fit([instance.py for instance in instances])
|
||||
end
|
||||
|
||||
|
||||
export LearningSolver, solve!, fit!
|
||||
export Instance,
|
||||
LearningSolver,
|
||||
solve!,
|
||||
fit!
|
||||
|
||||
26
test/instance/file_test.jl
Normal file
26
test/instance/file_test.jl
Normal file
@@ -0,0 +1,26 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using JuMP
|
||||
using MIPLearn
|
||||
using Gurobi
|
||||
|
||||
@testset "FileInstance" begin
|
||||
@testset "solve" begin
|
||||
model = Model()
|
||||
@variable(model, x, Bin)
|
||||
@variable(model, y, Bin)
|
||||
@objective(model, Max, x + y)
|
||||
instance = JuMPInstance(model)
|
||||
filename = tempname()
|
||||
save(filename, instance)
|
||||
|
||||
file_instance = FileInstance(filename)
|
||||
solver = LearningSolver(Gurobi.Optimizer)
|
||||
solve!(solver, file_instance)
|
||||
|
||||
loaded = load_jump_instance(filename)
|
||||
@test length(loaded.py.samples) == 1
|
||||
end
|
||||
end
|
||||
35
test/instance/jump_test.jl
Normal file
35
test/instance/jump_test.jl
Normal file
@@ -0,0 +1,35 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
@testset "JuMPInstance" begin
|
||||
@testset "save and load" begin
|
||||
# Create basic model
|
||||
model = Model()
|
||||
@variable(model, x, Bin)
|
||||
@variable(model, y, Bin)
|
||||
@objective(model, Max, x + y)
|
||||
@feature(x, [1.0])
|
||||
@category(x, "cat1")
|
||||
@feature(model, [5.0])
|
||||
|
||||
# Solve
|
||||
instance = JuMPInstance(model)
|
||||
solver = LearningSolver(Gurobi.Optimizer)
|
||||
stats = solve!(solver, instance)
|
||||
@test length(instance.py.samples) == 1
|
||||
|
||||
# Save model to file
|
||||
filename = tempname()
|
||||
save(filename, instance)
|
||||
@test isfile(filename)
|
||||
|
||||
# Read model from file
|
||||
loaded = load_jump_instance(filename)
|
||||
x = variable_by_name(loaded.model, "x")
|
||||
@test loaded.model.ext[:miplearn][:variable_features][x] == [1.0]
|
||||
@test loaded.model.ext[:miplearn][:variable_categories][x] == "cat1"
|
||||
@test loaded.model.ext[:miplearn][:instance_features] == [5.0]
|
||||
@test length(loaded.py.samples) == 1
|
||||
end
|
||||
end
|
||||
@@ -8,6 +8,7 @@ using MIPLearn
|
||||
MIPLearn.setup_logger()
|
||||
|
||||
@testset "MIPLearn" begin
|
||||
include("solvers/jump.jl")
|
||||
include("solvers/learning.jl")
|
||||
include("solvers/jump_test.jl")
|
||||
include("solvers/learning_test.jl")
|
||||
include("instance/file_test.jl")
|
||||
end
|
||||
|
||||
@@ -58,33 +58,4 @@ using Gurobi
|
||||
stats = solve!(solver, instance)
|
||||
end
|
||||
|
||||
@testset "file model" begin
|
||||
# Create basic model
|
||||
model = Model()
|
||||
@variable(model, x, Bin)
|
||||
@variable(model, y, Bin)
|
||||
@objective(model, Max, x + y)
|
||||
@feature(x, [1.0])
|
||||
@category(x, "cat1")
|
||||
@feature(model, [5.0])
|
||||
|
||||
# Solve
|
||||
instance = JuMPInstance(model)
|
||||
solver = LearningSolver(Gurobi.Optimizer)
|
||||
stats = solve!(solver, instance)
|
||||
@test length(instance.py.samples) == 1
|
||||
|
||||
# Save model to file
|
||||
filename = tempname()
|
||||
save(filename, instance)
|
||||
@test isfile(filename)
|
||||
|
||||
# Read model from file
|
||||
loaded = load_jump_instance(filename)
|
||||
x = variable_by_name(loaded.model, "x")
|
||||
@test loaded.model.ext[:miplearn][:variable_features][x] == [1.0]
|
||||
@test loaded.model.ext[:miplearn][:variable_categories][x] == "cat1"
|
||||
@test loaded.model.ext[:miplearn][:instance_features] == [5.0]
|
||||
@test length(loaded.py.samples) == 1
|
||||
end
|
||||
end
|
||||
Reference in New Issue
Block a user