Use HDF5 for instance files

This commit is contained in:
2021-07-28 09:30:52 -05:00
parent 837165575f
commit e94296b057
7 changed files with 41 additions and 39 deletions

View File

@@ -8,10 +8,13 @@ mutable struct FileInstance <: Instance
py::Union{Nothing,PyCall.PyObject}
loaded::Union{Nothing, JuMPInstance}
filename::AbstractString
h5::PyCall.PyObject
function FileInstance(filename::String)::FileInstance
function FileInstance(filename::AbstractString)::FileInstance
instance = new(nothing, nothing, filename)
instance.py = PyFileInstance(instance)
instance.h5 = Hdf5Sample(filename)
instance.filename = filename
return instance
end
end
@@ -21,8 +24,14 @@ get_instance_features(instance::FileInstance) = get_instance_features(instance.l
get_variable_features(instance::FileInstance) = get_variable_features(instance.loaded)
get_variable_categories(instance::FileInstance) = get_variable_categories(instance.loaded)
get_constraint_features(instance::FileInstance) = get_constraint_features(instance.loaded)
get_samples(instance::FileInstance) = get_samples(instance.loaded)
create_sample!(instance::FileInstance) = create_sample!(instance.loaded)
function get_samples(instance::FileInstance)
return [instance.h5]
end
function create_sample!(instance::FileInstance)
return instance.h5
end
function get_constraint_categories(instance::FileInstance)
return get_constraint_categories(instance.loaded)
@@ -41,7 +50,6 @@ function free(instance::FileInstance)
end
function flush(instance::FileInstance)
save(instance.filename, instance.loaded)
end
function __init_PyFileInstance__()

View File

@@ -3,7 +3,7 @@
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
using JLD2
import JSON
mutable struct JuMPInstance <: Instance
py::Union{Nothing,PyCall.PyObject}
@@ -75,42 +75,31 @@ function save(filename::AbstractString, instance::JuMPInstance)::Nothing
write_to_file(model, mps_filename)
mps = read(mps_filename)
# Pickle instance.py.samples. Ideally, we would use dumps and loads, but this
# causes some issues with PyCall, probably due to automatic type conversions.
samples_filename = tempname()
miplearn.write_pickle_gz(instance.samples, samples_filename)
samples = read(samples_filename)
# Generate JLD2 file
jldsave(
filename;
miplearn_version="0.2",
mps=mps,
ext=model.ext[:miplearn],
samples=samples,
)
# Generate HDF5
h5 = Hdf5Sample(filename, mode="w")
h5.put_scalar("miplearn_version", "0002")
h5.put_bytes("mps", mps)
h5.put_scalar("jump_ext", JSON.json(model.ext[:miplearn]))
return
end
function _check_miplearn_version(file)
v = file["miplearn_version"]
v == "0.2" || error(
function _check_miplearn_version(h5)
v = h5.get_scalar("miplearn_version")
v == "0002" || error(
"The file you are trying to load has been generated by " *
"MIPLearn $(v) and you are currently running MIPLearn 0.2. " *
"MIPLearn $(v) and you are currently running MIPLearn 0002 " *
"Reading files generated by different versions of MIPLearn is " *
"not currently supported."
)
end
function load_instance(filename::AbstractString)::JuMPInstance
jldopen(filename, "r") do file
_check_miplearn_version(file)
instance = JuMPInstance(file["mps"], file["ext"])
samples_filename = tempname()
write(samples_filename, file["samples"])
instance.samples = miplearn.read_pickle_gz(samples_filename)
return instance
end
h5 = Hdf5Sample(filename)
_check_miplearn_version(h5)
mps = h5.get_bytes("mps")
ext = h5.get_scalar("jump_ext")
instance = JuMPInstance(Vector{UInt8}(mps), JSON.parse(ext))
return instance
end
export JuMPInstance, save, load_instance

View File

@@ -3,6 +3,7 @@
# Released under the modified BSD license. See COPYING.md for more details.
using Distributed
using JLD2
struct LearningSolver
@@ -117,7 +118,6 @@ end
function load_solver(filename::AbstractString)::LearningSolver
jldopen(filename, "r") do file
_check_miplearn_version(file)
solve_py_filename = tempname()
write(solve_py_filename, file["solver_py"])
solver_py = miplearn.read_pickle_gz(solve_py_filename)