39 Commits
v0.4.0 ... dev

Author SHA1 Message Date
d351d84d58 DualGMI: Skip empty H5 files 2025-07-28 12:54:42 -05:00
1aaf4ebdc4 DualGmi: Revert early stop for invalid cuts 2025-07-22 13:43:35 -05:00
5662e5c2e6 DualGMI: Add time limit 2025-07-22 12:06:37 -05:00
63bbd750fb DualGMI: compression: Skip empty files 2025-07-17 17:07:20 -05:00
6c903d0b19 DualGMI: Fix type errors 2025-07-17 13:02:45 -05:00
c3a8fa6a08 DualGMI: Use compressed basis representation 2025-07-17 12:22:11 -05:00
5c522dbc5f DualGMI: Reimplement Expert using kNN component 2025-07-17 11:04:41 -05:00
a9f1b2c394 JumpSolver: skip obj_coeffs_quad unless problem has quad terms 2025-07-17 10:45:58 -05:00
2ea0043c03 Add support for MIQPs; implement max cut model 2025-06-11 15:38:22 -05:00
9ac2f74856 BB/log: Increase node & parent columnd width 2025-04-18 16:05:01 -05:00
672bb220c1 Disable precompilation 2024-12-10 15:12:00 -06:00
20a7cfb42d BB: Make compatible with MOI 1.32+ 2024-12-10 15:09:00 -06:00
b6ba75c3dc Add compat section: PrecompileTools, SCIP 2024-12-10 12:20:25 -06:00
a5a3690bb6 Bump to MIPLearn 0.4.2 2024-12-10 11:47:26 -06:00
e5a2550c21 Bump to MIPLearn 0.4.1 2024-12-10 11:10:29 -06:00
011a106d20 gmi_dual: Small fixes 2024-10-17 09:37:47 -05:00
006ace00e7 Accelerate KnnDualGmiComponent_before_mip; enable precompilation 2024-08-23 10:08:07 -05:00
46ed6859f2 accelerate build_constraints 2024-08-23 05:32:35 -05:00
15dfcac32e gmi_dual: Implement alternative strategies, report time and cuts 2024-08-20 17:02:45 -05:00
c5fe6bf712 Detect and skip duplicate cuts 2024-08-08 08:58:29 -05:00
24d93c8894 gmi_dual: Implement alternative cut callback strategy 2024-08-07 12:16:20 -05:00
ffea599af3 cuts: Speed up tableau computation 2024-06-14 15:35:12 -05:00
2f16f04878 gmi_dual: Accelerate build_expr 2024-06-14 13:56:56 -05:00
70d2ee5883 dual_gmi: Relax tolerances 2024-06-13 15:15:49 -05:00
92fd3c3e32 dual_gmi: Fix gap formula 2024-06-13 14:58:14 -05:00
77c7e94927 gmi_dual: stop early; fix gap improvement with zero cuts issue 2024-06-13 14:48:54 -05:00
24532614e5 gmi_dual: Return time 2024-06-10 12:28:40 -05:00
fd655b2291 collect_gmi_dual: Filter out useless cuts 2024-06-07 12:07:26 -05:00
6609254105 gmi: Fix obj_offset; add more profiling 2024-06-07 11:58:41 -05:00
5728098614 Minor changes 2024-06-07 11:40:22 -05:00
627952a083 collect_gmi_dual: Remove useless set_obj 2024-06-07 11:14:45 -05:00
1bd4917cca collect_gmi_dual: Remove v2 data struct 2024-06-07 11:13:59 -05:00
f89903cf68 collect_gmi_dual: profile, do not filter at the end 2024-06-07 10:56:58 -05:00
beab75a16d Implement expert and knn dual gmi component 2024-06-06 10:59:36 -05:00
00fe4d07d2 Add gmi_dual 2024-06-02 05:10:33 -05:00
1c204d765e Add gmi test; update H5 2024-05-29 09:48:54 -05:00
93e604817b Reformat source code 2024-05-29 09:04:59 -05:00
e9deac94a5 Move collect_gmi to gmi.jl 2024-05-29 09:01:51 -05:00
9c61b98cb9 Make GMI cuts more stable 2024-03-12 13:56:34 -05:00
34 changed files with 1270 additions and 387 deletions

View File

@@ -1,7 +1,7 @@
name = "MIPLearn"
uuid = "2b1277c3-b477-4c49-a15e-7ba350325c68"
authors = ["Alinson S Xavier <git@axavier.org>"]
version = "0.4.0"
version = "0.4.2"
[deps]
Conda = "8f4d0f93-b110-5947-807f-2305c1781a2d"
@@ -15,10 +15,12 @@ KLU = "ef3ab10e-7fda-4108-b977-705223b18434"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
@@ -30,7 +32,6 @@ HDF5 = "0.16"
HiGHS = "1"
JLD2 = "0.4"
JSON = "0.21"
julia = "1"
JuMP = "1"
KLU = "0.4"
MathOptInterface = "1"
@@ -39,3 +40,6 @@ PyCall = "1"
Requires = "1"
Statistics = "1"
TimerOutputs = "0.5"
julia = "1"
PrecompileTools = "1"
SCIP = "0.12"

2
deps/build.jl vendored
View File

@@ -5,7 +5,7 @@ function install_miplearn()
Conda.update()
pip = joinpath(dirname(pyimport("sys").executable), "pip")
isfile(pip) || error("$pip: invalid path")
run(`$pip install miplearn==0.4.0`)
run(`$pip install miplearn==0.4.4`)
end
install_miplearn()

View File

@@ -6,7 +6,7 @@ using Printf
function print_progress_header()
@printf(
"%8s %9s %9s %13s %13s %9s %6s %13s %6s %-24s %9s %9s %6s %6s",
"%8s %9s %9s %13s %13s %9s %9s %13s %9s %-24s %9s %9s %6s %6s",
"time",
"processed",
"pending",
@@ -46,7 +46,7 @@ function print_progress(
branch_ub = @sprintf("%9.2f", last(node.branch_ub))
end
@printf(
"%8.2f %9d %9d %13.6e %13.6e %9.2e %6d %13.6e %6s %-24s %9s %9s %6d %6d",
"%8.2f %9d %9d %13.6e %13.6e %9.2e %9d %13.6e %9s %-24s %9s %9s %6d %6d",
time_elapsed,
pool.processed,
length(pool.processing) + length(pool.pending),

View File

@@ -134,7 +134,11 @@ function _get_int_variables(
var_ub = constr.upper
MOI.delete(optimizer, _upper_bound_index(var))
end
MOI.add_constraint(optimizer, var, MOI.Interval(var_lb, var_ub))
MOI.add_constraint(
optimizer,
MOI.VariableIndex(var.index),
MOI.Interval(var_lb, var_ub),
)
end
push!(vars, var)
push!(lb, var_lb)

View File

@@ -4,15 +4,22 @@
module Cuts
using PyCall
import ..to_str_array
include("tableau/structs.jl")
# include("blackbox/cplex.jl")
include("tableau/collect.jl")
include("tableau/numerics.jl")
include("tableau/gmi.jl")
include("tableau/gmi_dual.jl")
include("tableau/moi.jl")
include("tableau/tableau.jl")
include("tableau/transform.jl")
function __init__()
__init_gmi_dual__()
end
end # module

View File

@@ -1,184 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import ..H5File
using OrderedCollections
function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_round = 100)
@info mps_filename
reset_timer!()
# Open HDF5 file
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
h5 = H5File(h5_filename)
# Read optimal solution
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
# Read optimal value
obj_mip = h5.get_scalar("mip_lower_bound")
if obj_mip === nothing
obj_mip = h5.get_scalar("mip_obj_value")
end
obj_lp = nothing
h5.file.close()
# Define relative MIP gap
gap(v) = 100 * abs(obj_mip - v) / abs(v)
# Initialize stats
stats_obj = []
stats_gap = []
stats_ncuts = []
stats_time_convert = 0
stats_time_solve = 0
stats_time_select = 0
stats_time_tableau = 0
stats_time_gmi = 0
all_cuts = nothing
# Read problem
model = read_from_file(mps_filename)
for round = 1:max_rounds
@info "Round $(round)..."
stats_time_convert = @elapsed begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
@assert all(data.constr_lb .- 1e-3 .<= data.constr_lhs * sol_opt)
@assert all(data.constr_lhs * sol_opt .<= data.constr_ub .+ 1e-3)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
@assert data_s.constr_lhs * sol_opt_s data_s.constr_lb
end
# Optimize standard form
optimize!(model_s)
stats_time_solve += solve_time(model_s)
obj = objective_value(model_s) + data_s.obj_offset
if obj_lp === nothing
obj_lp = obj
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
push!(stats_ncuts, 0)
end
if termination_status(model_s) != MOI.OPTIMAL
return
end
# Select tableau rows
basis = get_basis(model_s)
sol_frac = get_x(model_s)
stats_time_select += @elapsed begin
selected_rows =
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
end
# Compute selected tableau rows
stats_time_tableau += @elapsed begin
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
# Assert tableau rows have been computed correctly
@assert tableau.lhs * sol_frac tableau.rhs
@assert tableau.lhs * sol_opt_s tableau.rhs
end
# Compute GMI cuts
stats_time_gmi += @elapsed begin
cuts_s = compute_gmi(data_s, tableau)
# Assert cuts have been generated correctly
try
assert_cuts_off(cuts_s, sol_frac)
assert_does_not_cut_off(cuts_s, sol_opt_s)
catch
@warn "Invalid cuts detected. Discarding round $round cuts and aborting."
break
end
# Abort if no cuts are left
if length(cuts_s.lb) == 0
@info "No cuts generated. Aborting."
break
end
end
# Add GMI cuts to original problem
cuts = backwards(transforms, cuts_s)
assert_does_not_cut_off(cuts, sol_opt)
constrs = add_constraint_set(model, cuts)
# Optimize original form
set_optimizer(model, optimizer)
undo_relax = relax_integrality(model)
optimize!(model)
obj = objective_value(model)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
# Store useful cuts; drop useless ones from the problem
useful = [abs(shadow_price(c)) > 1e-3 for c in constrs]
drop = findall(useful .== false)
keep = findall(useful .== true)
delete.(model, constrs[drop])
if all_cuts === nothing
all_cuts = cuts
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
end
push!(stats_ncuts, length(all_cuts.lb))
undo_relax()
end
# Store cuts
if all_cuts !== nothing
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
h5 = H5File(h5_filename)
h5.put_sparse("cuts_lhs", all_cuts.lhs)
h5.put_array("cuts_lb", all_cuts.lb)
h5.put_array("cuts_ub", all_cuts.ub)
h5.file.close()
end
return OrderedDict(
"instance" => mps_filename,
"max_rounds" => max_rounds,
"rounds" => length(stats_obj) - 1,
"time_convert" => stats_time_convert,
"time_solve" => stats_time_solve,
"time_tableau" => stats_time_tableau,
"time_gmi" => stats_time_gmi,
"obj_mip" => obj_mip,
"obj_lp" => obj_lp,
"stats_obj" => stats_obj,
"stats_gap" => stats_gap,
"stats_ncuts" => stats_ncuts,
)
end
export collect_gmi

View File

@@ -2,16 +2,196 @@
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import ..H5File
using OrderedCollections
using SparseArrays
using Statistics
using TimerOutputs
@inline frac(x::Float64) = x - floor(x)
function collect_gmi(
mps_filename;
optimizer,
max_rounds = 10,
max_cuts_per_round = 100,
atol = 1e-4,
)
reset_timer!()
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
# Open HDF5 file
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
h5 = H5File(h5_filename)
# Read optimal solution
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
# Read optimal value
obj_mip = h5.get_scalar("mip_lower_bound")
if obj_mip === nothing
obj_mip = h5.get_scalar("mip_obj_value")
end
obj_lp = h5.get_scalar("lp_obj_value")
h5.file.close()
# Define relative MIP gap
gap(v) = 100 * abs(obj_mip - v) / abs(v)
# Initialize stats
stats_obj = []
stats_gap = []
stats_ncuts = []
stats_time_convert = 0
stats_time_solve = 0
stats_time_select = 0
stats_time_tableau = 0
stats_time_gmi = 0
all_cuts = nothing
# Read problem
model = read_from_file(mps_filename)
for round = 1:max_rounds
@info "Round $(round)..."
stats_time_convert = @elapsed begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
end
# Optimize standard form
optimize!(model_s)
stats_time_solve += solve_time(model_s)
obj = objective_value(model_s)
if round == 1
# Assert standard form problem has same value as original
assert_eq(obj, obj_lp)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
push!(stats_ncuts, 0)
end
if termination_status(model_s) != MOI.OPTIMAL
return
end
# Select tableau rows
basis = get_basis(model_s)
sol_frac = get_x(model_s)
stats_time_select += @elapsed begin
selected_rows =
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
end
# Compute selected tableau rows
stats_time_tableau += @elapsed begin
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
# Assert tableau rows have been computed correctly
assert_eq(tableau.lhs * sol_frac, tableau.rhs)
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
end
# Compute GMI cuts
stats_time_gmi += @elapsed begin
cuts_s = compute_gmi(data_s, tableau)
# Assert cuts have been generated correctly
assert_cuts_off(cuts_s, sol_frac)
assert_does_not_cut_off(cuts_s, sol_opt_s)
# Abort if no cuts are left
if length(cuts_s.lb) == 0
@info "No cuts generated. Stopping."
break
end
end
# Add GMI cuts to original problem
cuts = backwards(transforms, cuts_s)
assert_does_not_cut_off(cuts, sol_opt)
constrs = add_constraint_set(model, cuts)
# Optimize original form
set_optimizer(model, optimizer)
undo_relax = relax_integrality(model)
optimize!(model)
obj = objective_value(model)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
# Store useful cuts; drop useless ones from the problem
useful = [abs(shadow_price(c)) > atol for c in constrs]
drop = findall(useful .== false)
keep = findall(useful .== true)
delete.(model, constrs[drop])
if all_cuts === nothing
all_cuts = cuts
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
all_cuts.ub = [all_cuts.ub; cuts.ub[keep]]
end
push!(stats_ncuts, length(all_cuts.lb))
undo_relax()
end
# Store cuts
if all_cuts !== nothing
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
h5 = H5File(h5_filename)
h5.put_sparse("cuts_lhs", all_cuts.lhs)
h5.put_array("cuts_lb", all_cuts.lb)
h5.put_array("cuts_ub", all_cuts.ub)
h5.file.close()
end
return OrderedDict(
"instance" => mps_filename,
"max_rounds" => max_rounds,
"rounds" => length(stats_obj) - 1,
"time_convert" => stats_time_convert,
"time_solve" => stats_time_solve,
"time_tableau" => stats_time_tableau,
"time_gmi" => stats_time_gmi,
"obj_mip" => obj_mip,
"stats_obj" => stats_obj,
"stats_gap" => stats_gap,
"stats_ncuts" => stats_ncuts,
)
end
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 1e-4)
candidate_rows = [
r for
r = 1:length(basis.var_basic) if (data.var_types[basis.var_basic[r]] != 'C') &&
(frac(x[basis.var_basic[r]]) > atol)
r for r = 1:length(basis.var_basic) if (
(data.var_types[basis.var_basic[r]] != 'C') &&
(frac(x[basis.var_basic[r]]) > atol) &&
(frac2(x[basis.var_basic[r]]) > atol)
)
]
candidate_vals = frac.(x[basis.var_basic[candidate_rows]])
score = abs.(candidate_vals .- 0.5)
@@ -19,10 +199,10 @@ function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
return [candidate_rows[perm[i]] for i = 1:min(length(perm), max_rows)]
end
function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::ConstraintSet
function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
nrows, ncols = size(tableau.lhs)
ub = Float64[Inf for _ = 1:nrows]
lb = Float64[0.999 for _ = 1:nrows]
lb = Float64[0.9999 for _ = 1:nrows]
tableau_I, tableau_J, tableau_V = findnz(tableau.lhs)
lhs_I = Int[]
lhs_J = Int[]
@@ -30,23 +210,25 @@ function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::Constrain
@timeit "Compute coefficients" begin
for k = 1:nnz(tableau.lhs)
i::Int = tableau_I[k]
j::Int = tableau_J[k]
v::Float64 = 0.0
alpha_j = frac(tableau_V[k])
frac_alpha_j = frac(tableau_V[k])
alpha_j = tableau_V[k]
beta = frac(tableau.rhs[i])
if data.var_types[i] == "C"
if data.var_types[j] == 'C'
if alpha_j >= 0
v = alpha_j / beta
else
v = alpha_j / (1 - beta)
v = -alpha_j / (1 - beta)
end
else
if alpha_j <= beta
v = alpha_j / beta
if frac_alpha_j < beta
v = frac_alpha_j / beta
else
v = (1 - alpha_j) / (1 - beta)
v = (1 - frac_alpha_j) / (1 - beta)
end
end
if abs(v) > tol
if abs(v) > 1e-8
push!(lhs_I, i)
push!(lhs_J, tableau_J[k])
push!(lhs_V, v)
@@ -57,28 +239,5 @@ function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::Constrain
return ConstraintSet(; lhs, ub, lb)
end
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x
if (val <= cuts.ub[i] - tol) && (val >= cuts.lb[i] + tol)
throw(ErrorException("inequality fails to cut off fractional solution"))
end
end
end
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x
ub = cuts.ub[i]
lb = cuts.lb[i]
if (val >= ub) || (val <= lb)
throw(
ErrorException(
"inequality $i cuts off integer solution ($lb <= $val <= $ub)",
),
)
end
end
end
export compute_gmi, frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off
export compute_gmi,
frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off, collect_gmi

View File

@@ -0,0 +1,580 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Printf
using JuMP
using HiGHS
using Random
using DataStructures
import ..H5FieldsExtractor
global ExpertDualGmiComponent = PyNULL()
global KnnDualGmiComponent = PyNULL()
Base.@kwdef mutable struct _KnnDualGmiData
k = nothing
extractor = nothing
train_h5 = nothing
model = nothing
strategy = nothing
end
function collect_gmi_dual(
mps_filename;
optimizer,
max_rounds = 10,
max_cuts_per_round = 500,
time_limit = 3_600,
)
reset_timer!()
initial_time = time()
@timeit "Read H5" begin
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
h5 = H5File(h5_filename, "r")
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
obj_mip = h5.get_scalar("mip_obj_value")
h5.file.close()
end
# Define relative MIP gap
gap(v) = 100 * abs(obj_mip - v) / abs(obj_mip)
@timeit "Initialize" begin
stats_obj = []
stats_gap = []
stats_ncuts = []
original_basis = nothing
all_cuts = nothing
all_cuts_bases = nothing
all_cuts_rows = nothing
last_round_obj = nothing
end
@timeit "Read problem" begin
model = read_from_file(mps_filename)
set_optimizer(model, optimizer)
obj_original = objective_function(model)
end
for round = 1:max_rounds
@info "Round $(round)..."
@timeit "Convert model to standard form" begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
end
@timeit "Optimize standard model" begin
@info "Optimizing standard model..."
optimize!(model_s)
obj = objective_value(model_s)
if round == 1
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
push!(stats_ncuts, 0)
else
if obj last_round_obj
@info ("No improvement in obj value. Aborting.")
break
end
end
if termination_status(model_s) != MOI.OPTIMAL
error("Non-optimal termination status")
end
last_round_obj = obj
end
@timeit "Select tableau rows" begin
basis = get_basis(model_s)
if round == 1
original_basis = basis
end
sol_frac = get_x(model_s)
selected_rows =
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
end
@timeit "Compute tableau rows" begin
tableau = compute_tableau(data_s, basis, x = sol_frac, rows = selected_rows)
# Assert tableau rows have been computed correctly
assert_eq(tableau.lhs * sol_frac, tableau.rhs, atol=1e-3)
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs, atol=1e-3)
end
@timeit "Compute GMI cuts" begin
cuts_s = compute_gmi(data_s, tableau)
# Assert cuts have been generated correctly
assert_cuts_off(cuts_s, sol_frac)
assert_does_not_cut_off(cuts_s, sol_opt_s)
# Abort if no cuts are left
if length(cuts_s.lb) == 0
@info "No cuts generated. Aborting."
break
else
@info "Generated $(length(cuts_s.lb)) cuts"
end
end
@timeit "Add GMI cuts to original model" begin
@timeit "Convert to original form" begin
cuts = backwards(transforms, cuts_s)
end
@timeit "Prepare bv" begin
bv = repeat([basis], length(selected_rows))
end
@timeit "Append matrices" begin
if round == 1
all_cuts = cuts
all_cuts_bases = bv
all_cuts_rows = selected_rows
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs]
all_cuts.lb = [all_cuts.lb; cuts.lb]
all_cuts.ub = [all_cuts.ub; cuts.ub]
all_cuts_bases = [all_cuts_bases; bv]
all_cuts_rows = [all_cuts_rows; selected_rows]
end
end
@timeit "Add to model" begin
@info "Adding $(length(all_cuts.lb)) constraints to original model"
constrs, gmi_exps = add_constraint_set_dual_v2(model, all_cuts)
end
end
@timeit "Optimize original model" begin
set_objective_function(model, obj_original)
undo_relax = relax_integrality(model)
@info "Optimizing original model (constr)..."
optimize!(model)
obj = objective_value(model)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
sp = [shadow_price(c) for c in constrs]
undo_relax()
useful = [abs(sp[i]) > 1e-6 for (i, _) in enumerate(constrs)]
keep = findall(useful .== true)
end
@timeit "Filter out useless cuts" begin
@info "Keeping $(length(keep)) useful cuts"
all_cuts.lhs = all_cuts.lhs[keep, :]
all_cuts.lb = all_cuts.lb[keep]
all_cuts.ub = all_cuts.ub[keep]
all_cuts_bases = all_cuts_bases[keep, :]
all_cuts_rows = all_cuts_rows[keep, :]
push!(stats_ncuts, length(all_cuts_rows))
if isempty(keep)
break
end
end
@timeit "Update obj function of original model" begin
delete.(model, constrs)
set_objective_function(
model,
obj_original -
sum(sp[i] * gmi_exps[i] for (i, c) in enumerate(constrs) if useful[i]),
)
end
elapsed_time = time() - initial_time
if elapsed_time > time_limit
@info "Time limit exceeded. Stopping."
break
end
end
@timeit "Store cuts in H5 file" begin
if all_cuts !== nothing
ncuts = length(all_cuts_rows)
total =
length(original_basis.var_basic) +
length(original_basis.var_nonbasic) +
length(original_basis.constr_basic) +
length(original_basis.constr_nonbasic)
all_cuts_basis_sizes = Array{Int64,2}(undef, ncuts, 4)
all_cuts_basis_vars = Array{Int64,2}(undef, ncuts, total)
for i = 1:ncuts
vb = all_cuts_bases[i].var_basic
vn = all_cuts_bases[i].var_nonbasic
cb = all_cuts_bases[i].constr_basic
cn = all_cuts_bases[i].constr_nonbasic
all_cuts_basis_sizes[i, :] = [length(vb) length(vn) length(cb) length(cn)]
all_cuts_basis_vars[i, :] = [vb' vn' cb' cn']
end
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
h5 = H5File(h5_filename)
h5.put_sparse("cuts_lhs", all_cuts.lhs)
h5.put_array("cuts_lb", all_cuts.lb)
h5.put_array("cuts_ub", all_cuts.ub)
h5.put_array("cuts_basis_vars", all_cuts_basis_vars)
h5.put_array("cuts_basis_sizes", all_cuts_basis_sizes)
h5.put_array("cuts_rows", all_cuts_rows)
h5.file.close()
end
end
to = TimerOutputs.get_defaulttimer()
stats_time = TimerOutputs.tottime(to) / 1e9
print_timer()
return OrderedDict(
"instance" => mps_filename,
"max_rounds" => max_rounds,
"rounds" => length(stats_obj) - 1,
"obj_mip" => obj_mip,
"stats_obj" => stats_obj,
"stats_gap" => stats_gap,
"stats_ncuts" => stats_ncuts,
"stats_time" => stats_time,
)
end
function add_constraint_set_dual_v2(model::JuMP.Model, cs::ConstraintSet)
vars = all_variables(model)
nrows, ncols = size(cs.lhs)
@timeit "Transpose LHS" begin
lhs_t = spzeros(ncols, nrows)
ftranspose!(lhs_t, cs.lhs, x -> x)
lhs_t_rows = rowvals(lhs_t)
lhs_t_vals = nonzeros(lhs_t)
end
constrs = []
gmi_exps = []
for i = 1:nrows
c = nothing
gmi_exp = nothing
gmi_exp2 = nothing
@timeit "Build expr" begin
expr = AffExpr()
for k in nzrange(lhs_t, i)
add_to_expression!(expr, lhs_t_vals[k], vars[lhs_t_rows[k]])
end
end
@timeit "Add constraints" begin
if isinf(cs.ub[i])
c = @constraint(model, cs.lb[i] <= expr)
gmi_exp = cs.lb[i] - expr
elseif isinf(cs.lb[i])
c = @constraint(model, expr <= cs.ub[i])
gmi_exp = expr - cs.ub[i]
else
c = @constraint(model, cs.lb[i] <= expr <= cs.ub[i])
gmi_exp = cs.lb[i] - expr
gmi_exp2 = expr - cs.ub[i]
end
end
@timeit "Update structs" begin
push!(constrs, c)
push!(gmi_exps, gmi_exp)
if !isnothing(gmi_exp2)
push!(gmi_exps, gmi_exp2)
end
end
end
return constrs, gmi_exps
end
function _dualgmi_features(h5_filename, extractor)
h5 = H5File(h5_filename, "r")
try
return extractor.get_instance_features(h5)
finally
h5.close()
end
end
function _dualgmi_compress_h5(h5_filename)
vars_to_basis_offset = Dict()
basis_vars = []
basis_sizes = []
cut_basis::Array{Int} = []
cut_row::Array{Int} = []
h5 = H5File(h5_filename, "r")
orig_cut_basis_vars = h5.get_array("cuts_basis_vars")
orig_cut_basis_sizes = h5.get_array("cuts_basis_sizes")
orig_cut_rows = h5.get_array("cuts_rows")
h5.close()
if orig_cut_basis_vars === nothing
@warn "orig_cut_basis_vars is null; skipping file"
return
end
ncuts, _ = size(orig_cut_basis_vars)
if ncuts == 0
return
end
for i in 1:ncuts
vars = orig_cut_basis_vars[i, :]
sizes = orig_cut_basis_sizes[i, :]
row = orig_cut_rows[i]
if vars keys(vars_to_basis_offset)
offset = size(basis_vars)[1] + 1
vars_to_basis_offset[vars] = offset
push!(basis_vars, vars)
push!(basis_sizes, sizes)
end
offset = vars_to_basis_offset[vars]
push!(cut_basis, offset)
push!(cut_row, row)
end
basis_vars = hcat(basis_vars...)'
basis_sizes = hcat(basis_sizes...)'
_, n_vars = size(basis_vars)
if n_vars == 0
@warn "n_vars is zero; skipping file"
return
end
h5 = H5File(h5_filename, "r+")
h5.put_array("gmi_basis_vars", basis_vars)
h5.put_array("gmi_basis_sizes", basis_sizes)
h5.put_array("gmi_cut_basis", cut_basis)
h5.put_array("gmi_cut_row", cut_row)
h5.file.close()
end
function _dualgmi_generate(train_h5, model)
@timeit "Read problem data" begin
data = ProblemData(model)
end
@timeit "Convert to standard form" begin
data_s, transforms = convert_to_standard_form(data)
end
@timeit "Collect cuts from H5 files" begin
basis_vars_to_basis_offset = Dict()
combined_basis_sizes = nothing
combined_basis_sizes_list = Any[]
combined_basis_vars = nothing
combined_basis_vars_list = Any[]
combined_cut_rows = Any[]
for h5_filename in train_h5
@timeit "get_array (new)" begin
h5 = H5File(h5_filename, "r")
gmi_basis_vars = h5.get_array("gmi_basis_vars")
if gmi_basis_vars === nothing
@warn "$(h5_filename) does not contain gmi_basis_vars; skipping"
continue
end
gmi_basis_sizes = h5.get_array("gmi_basis_sizes")
gmi_cut_basis = h5.get_array("gmi_cut_basis")
gmi_cut_row = h5.get_array("gmi_cut_row")
h5.close()
end
@timeit "combine basis" begin
nbasis, _ = size(gmi_basis_vars)
local_to_combined_offset = Dict()
for local_offset in 1:nbasis
vars = gmi_basis_vars[local_offset, :]
sizes = gmi_basis_sizes[local_offset, :]
if vars keys(basis_vars_to_basis_offset)
combined_offset = length(combined_basis_vars_list) + 1
basis_vars_to_basis_offset[vars] = combined_offset
push!(combined_basis_vars_list, vars)
push!(combined_basis_sizes_list, sizes)
push!(combined_cut_rows, Set{Int}())
end
combined_offset = basis_vars_to_basis_offset[vars]
local_to_combined_offset[local_offset] = combined_offset
end
end
@timeit "combine rows" begin
ncuts = length(gmi_cut_row)
for i in 1:ncuts
local_offset = gmi_cut_basis[i]
combined_offset = local_to_combined_offset[local_offset]
row = gmi_cut_row[i]
push!(combined_cut_rows[combined_offset], row)
end
end
@timeit "convert lists to matrices" begin
combined_basis_vars = hcat(combined_basis_vars_list...)'
combined_basis_sizes = hcat(combined_basis_sizes_list...)'
end
end
end
@timeit "Compute tableaus and cuts" begin
all_cuts = nothing
nbasis = length(combined_cut_rows)
for offset in 1:nbasis
rows = combined_cut_rows[offset]
try
vbb, vnn, cbb, cnn = combined_basis_sizes[offset, :]
current_basis = Basis(;
var_basic = combined_basis_vars[offset, 1:vbb],
var_nonbasic = combined_basis_vars[offset, vbb+1:vbb+vnn],
constr_basic = combined_basis_vars[offset, vbb+vnn+1:vbb+vnn+cbb],
constr_nonbasic = combined_basis_vars[offset, vbb+vnn+cbb+1:vbb+vnn+cbb+cnn],
)
tableau = compute_tableau(data_s, current_basis; rows=collect(rows))
cuts_s = compute_gmi(data_s, tableau)
cuts = backwards(transforms, cuts_s)
if all_cuts === nothing
all_cuts = cuts
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs]
all_cuts.lb = [all_cuts.lb; cuts.lb]
all_cuts.ub = [all_cuts.ub; cuts.ub]
end
catch e
if isa(e, AssertionError)
@warn "Numerical error detected. Skipping cuts from current tableau."
continue
else
rethrow(e)
end
end
end
end
return all_cuts
end
function _dualgmi_set_callback(model, all_cuts)
function cut_callback(cb_data)
if all_cuts !== nothing
constrs = build_constraints(model, all_cuts)
@info "Enforcing $(length(constrs)) cuts..."
for c in constrs
MOI.submit(model, MOI.UserCut(cb_data), c)
end
all_cuts = nothing
end
end
set_attribute(model, MOI.UserCutCallback(), cut_callback)
end
function KnnDualGmiComponent_fit(data::_KnnDualGmiData, train_h5)
x = hcat([_dualgmi_features(filename, data.extractor) for filename in train_h5]...)'
model = pyimport("sklearn.neighbors").NearestNeighbors(n_neighbors = length(train_h5))
model.fit(x)
data.model = model
data.train_h5 = train_h5
end
function KnnDualGmiComponent_before_mip(data::_KnnDualGmiData, test_h5, model, _)
reset_timer!()
@timeit "Extract features" begin
x = _dualgmi_features(test_h5, data.extractor)
x = reshape(x, 1, length(x))
end
@timeit "Find neighbors" begin
neigh_dist, neigh_ind = data.model.kneighbors(x, return_distance = true)
neigh_ind = neigh_ind .+ 1
N = length(neigh_dist)
k = min(N, data.k)
if data.strategy == "near"
selected = collect(1:k)
elseif data.strategy == "far"
selected = collect((N - k + 1) : N)
elseif data.strategy == "rand"
selected = shuffle(collect(1:N))[1:k]
else
error("unknown strategy: $(data.strategy)")
end
@info "Dual GMI: Selected neighbors ($(data.strategy)):"
neigh_dist = neigh_dist[selected]
neigh_ind = neigh_ind[selected]
for i in 1:k
h5_filename = data.train_h5[neigh_ind[i]]
dist = neigh_dist[i]
@info " $(h5_filename) dist=$(dist)"
end
end
@info "Dual GMI: Generating cuts..."
@timeit "Generate cuts" begin
time_generate = @elapsed begin
cuts = _dualgmi_generate(data.train_h5[neigh_ind], model)
end
@info "Dual GMI: Generated $(length(cuts.lb)) unique cuts in $(time_generate) seconds"
end
@timeit "Set callback" begin
_dualgmi_set_callback(model, cuts)
end
print_timer()
stats = Dict()
stats["KnnDualGmi: k"] = k
stats["KnnDualGmi: strategy"] = data.strategy
stats["KnnDualGmi: cuts"] = length(cuts.lb)
stats["KnnDualGmi: time generate"] = time_generate
return stats
end
function __init_gmi_dual__()
@pydef mutable struct KnnDualGmiComponentPy
function __init__(self; extractor, k = 3, strategy = "near")
self.data = _KnnDualGmiData(; extractor, k, strategy)
end
function fit(self, train_h5)
KnnDualGmiComponent_fit(self.data, train_h5)
end
function before_mip(self, test_h5, model, stats)
return @time KnnDualGmiComponent_before_mip(self.data, test_h5, model.inner, stats)
end
end
copy!(KnnDualGmiComponent, KnnDualGmiComponentPy)
@pydef mutable struct ExpertDualGmiComponentPy
function __init__(self)
self.inner = KnnDualGmiComponentPy(
extractor=H5FieldsExtractor(instance_fields=["static_var_obj_coeffs"]),
k=1,
)
end
function fit(self, train_h5)
end
function before_mip(self, test_h5, model, stats)
self.inner.fit([test_h5])
return self.inner.before_mip(test_h5, model, stats)
end
end
copy!(ExpertDualGmiComponent, ExpertDualGmiComponentPy)
end
export collect_gmi_dual, expert_gmi_dual, ExpertDualGmiComponent, KnnDualGmiComponent

View File

@@ -9,6 +9,8 @@ function ProblemData(model::Model)::ProblemData
# Objective function
obj = objective_function(model)
obj_offset = obj.constant
obj_sense = objective_sense(model)
obj = [v keys(obj.terms) ? obj.terms[v] : 0.0 for v in vars]
# Variable types, lower bounds and upper bounds
@@ -86,8 +88,9 @@ function ProblemData(model::Model)::ProblemData
@assert length(constr_ub) == m
return ProblemData(
obj_offset = 0.0;
obj,
obj_offset,
obj_sense,
constr_lb,
constr_ub,
constr_lhs,
@@ -102,6 +105,7 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
model = Model()
# Variables
obj_expr = AffExpr(data.obj_offset)
nvars = length(data.obj)
@variable(model, x[1:nvars])
for i = 1:nvars
@@ -117,8 +121,9 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
if isfinite(data.var_ub[i])
set_upper_bound(x[i], data.var_ub[i])
end
set_objective_coefficient(model, x[i], data.obj[i])
add_to_expression!(obj_expr, x[i], data.obj[i])
end
@objective(model, data.obj_sense, obj_expr)
# Constraints
lhs = data.constr_lhs * x
@@ -140,19 +145,9 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
end
function add_constraint_set(model::JuMP.Model, cs::ConstraintSet)
vars = all_variables(model)
nrows, _ = size(cs.lhs)
constrs = []
for i = 1:nrows
c = nothing
if isinf(cs.ub[i])
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars))
elseif isinf(cs.lb[i])
c = @constraint(model, dot(cs.lhs[i, :], vars) <= cs.ub[i])
else
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars) <= cs.ub[i])
end
push!(constrs, c)
constrs = build_constraints(model, cs)
for c in constrs
add_constraint(model, c)
end
return constrs
end
@@ -164,4 +159,30 @@ function set_warm_start(model::JuMP.Model, x::Vector{Float64})
end
end
export to_model, ProblemData, add_constraint_set, set_warm_start
function build_constraints(model::JuMP.Model, cs::ConstraintSet)
vars = all_variables(model)
nrows, _ = size(cs.lhs)
constrs = []
for i = 1:nrows
# Build LHS expression
row = cs.lhs[i, :]
lhs_expr = AffExpr()
for (offset, val) in enumerate(row.nzval)
add_to_expression!(lhs_expr, vars[row.nzind[offset]], val)
end
# Build JuMP constraint
c = nothing
if isinf(cs.ub[i])
c = @build_constraint(cs.lb[i] <= lhs_expr)
elseif isinf(cs.lb[i])
c = @build_constraint(lhs_expr <= cs.ub[i])
else
c = @build_constraint(cs.lb[i] <= lhs_expr <= cs.ub[i])
end
push!(constrs, c)
end
return constrs
end
export to_model, ProblemData, add_constraint_set, set_warm_start, build_constraints

View File

@@ -0,0 +1,51 @@
@inline frac(x::Float64) = x - floor(x)
@inline frac2(x::Float64) = ceil(x) - x
function assert_leq(a, b; atol = 0.01)
if !all(a .<= b .+ atol)
delta = a .- b
for i in eachindex(delta)
if delta[i] > atol
@info "Assertion failed: a[$i] = $(a[i]) <= $(b[i]) = b[$i]"
end
end
error("assert_leq failed")
end
end
function assert_eq(a, b; atol = 1e-4)
if !all(abs.(a .- b) .<= atol)
delta = abs.(a .- b)
for i in eachindex(delta)
if delta[i] > atol
@info "Assertion failed: a[$i] = $(a[i]) == $(b[i]) = b[$i]"
end
end
error("assert_eq failed")
end
end
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x
if (val <= cuts.ub[i] - tol) && (val >= cuts.lb[i] + tol)
throw(ErrorException("inequality fails to cut off fractional solution"))
end
end
end
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x
ub = cuts.ub[i]
lb = cuts.lb[i]
if (val >= ub) || (val <= lb)
throw(
ErrorException(
"inequality $i cuts off integer solution ($lb <= $val <= $ub)",
),
)
end
end
end

View File

@@ -7,6 +7,7 @@ using SparseArrays
Base.@kwdef mutable struct ProblemData
obj::Vector{Float64}
obj_offset::Float64
obj_sense::Any
constr_lb::Vector{Float64}
constr_ub::Vector{Float64}
constr_lhs::SparseMatrixCSC

View File

@@ -54,8 +54,8 @@ end
function compute_tableau(
data::ProblemData,
basis::Basis,
x::Vector{Float64};
basis::Basis;
x::Union{Nothing,Vector{Float64}} = nothing,
rows::Union{Vector{Int},Nothing} = nothing,
tol = 1e-8,
)::Tableau
@@ -73,11 +73,12 @@ function compute_tableau(
factor = klu(sparse(lhs_b'))
end
@timeit "Compute tableau LHS" begin
tableau_lhs_I = Int[]
tableau_lhs_J = Int[]
tableau_lhs_V = Float64[]
for k = 1:length(rows)
@timeit "Compute tableau" begin
@timeit "Initialize" begin
tableau_rhs = zeros(length(rows))
tableau_lhs = zeros(length(rows), ncols)
end
for k in eachindex(1:length(rows))
@timeit "Prepare inputs" begin
i = rows[k]
e = zeros(nrows)
@@ -87,25 +88,14 @@ function compute_tableau(
sol = factor \ e
end
@timeit "Multiply" begin
row = sol' * data.constr_lhs
end
@timeit "Sparsify & copy" begin
for (j, v) in enumerate(row)
if abs(v) < tol
continue
end
push!(tableau_lhs_I, k)
push!(tableau_lhs_J, j)
push!(tableau_lhs_V, v)
tableau_lhs[k, :] = sol' * data.constr_lhs
tableau_rhs[k] = sol' * data.constr_ub
end
end
@timeit "Sparsify" begin
tableau_lhs[abs.(tableau_lhs) .<= tol] .= 0
tableau_lhs = sparse(tableau_lhs)
end
tableau_lhs =
sparse(tableau_lhs_I, tableau_lhs_J, tableau_lhs_V, length(rows), ncols)
end
@timeit "Compute tableau RHS" begin
tableau_rhs = [x[basis.var_basic]; zeros(length(basis.constr_basic))][rows]
end
@timeit "Compute tableau objective row" begin
@@ -114,12 +104,13 @@ function compute_tableau(
tableau_obj[abs.(tableau_obj).<tol] .= 0
end
return Tableau(
obj = tableau_obj,
lhs = tableau_lhs,
rhs = tableau_rhs,
z = dot(data.obj, x),
)
# Compute z if solution is provided
z = 0
if x !== nothing
z = dot(data.obj, x)
end
return Tableau(obj = tableau_obj, lhs = tableau_lhs, rhs = tableau_rhs, z = z)
end
export get_basis, get_x, compute_tableau

View File

@@ -6,11 +6,14 @@ module MIPLearn
using PyCall
using SparseArrays
using PrecompileTools: @setup_workload, @compile_workload
include("collectors.jl")
include("components.jl")
include("extractors.jl")
include("io.jl")
include("problems/maxcut.jl")
include("problems/setcover.jl")
include("problems/stab.jl")
include("problems/tsp.jl")
@@ -22,6 +25,7 @@ function __init__()
__init_components__()
__init_extractors__()
__init_io__()
__init_problems_maxcut__()
__init_problems_setcover__()
__init_problems_stab__()
__init_problems_tsp__()
@@ -32,4 +36,51 @@ end
include("BB/BB.jl")
include("Cuts/Cuts.jl")
# Precompilation
# =============================================================================
# function __precompile_cuts__()
# function build_model(mps_filename)
# model = read_from_file(mps_filename)
# set_optimizer(model, SCIP.Optimizer)
# return JumpModel(model)
# end
# BASEDIR = dirname(@__FILE__)
# mps_filename = "$BASEDIR/../test/fixtures/bell5.mps.gz"
# h5_filename = "$BASEDIR/../test/fixtures/bell5.h5"
# collect_gmi_dual(
# mps_filename;
# optimizer=HiGHS.Optimizer,
# max_rounds = 10,
# max_cuts_per_round = 500,
# )
# knn = KnnDualGmiComponent(
# extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"]),
# k = 2,
# )
# knn.fit([h5_filename, h5_filename])
# solver = LearningSolver(
# components = [
# ExpertPrimalComponent(action = SetWarmStart()),
# knn,
# ],
# skip_lp = true,
# )
# solver.optimize(mps_filename, build_model)
# end
# @setup_workload begin
# using SCIP
# using HiGHS
# using MIPLearn.Cuts
# using PrecompileTools: @setup_workload, @compile_workload
# __init__()
# Cuts.__init__()
# @compile_workload begin
# __precompile_cuts__()
# end
# end
end # module

View File

@@ -53,8 +53,14 @@ function __init_components__()
)
copy!(SelectTopSolutions, pyimport("miplearn.components.primal.mem").SelectTopSolutions)
copy!(MergeTopSolutions, pyimport("miplearn.components.primal.mem").MergeTopSolutions)
copy!(MemorizingCutsComponent, pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent)
copy!(MemorizingLazyComponent, pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent)
copy!(
MemorizingCutsComponent,
pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent,
)
copy!(
MemorizingLazyComponent,
pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent,
)
end
export MinProbabilityClassifier,

View File

@@ -39,14 +39,14 @@ end
function PyObject(m::SparseMatrixCSC)
pyimport("scipy.sparse").csc_matrix(
(m.nzval, m.rowval .- 1, m.colptr .- 1),
shape=size(m),
shape = size(m),
).tocoo()
end
function write_jld2(
objs::Vector,
dirname::AbstractString;
prefix::AbstractString=""
prefix::AbstractString = "",
)::Vector{String}
mkpath(dirname)
filenames = [@sprintf("%s/%s%05d.jld2", dirname, prefix, i) for i = 1:length(objs)]

31
src/problems/maxcut.jl Normal file
View File

@@ -0,0 +1,31 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
global MaxCutData = PyNULL()
global MaxCutGenerator = PyNULL()
function __init_problems_maxcut__()
copy!(MaxCutData, pyimport("miplearn.problems.maxcut").MaxCutData)
copy!(MaxCutGenerator, pyimport("miplearn.problems.maxcut").MaxCutGenerator)
end
function build_maxcut_model_jump(data::Any; optimizer)
if data isa String
data = read_pkl_gz(data)
end
nodes = collect(data.graph.nodes())
edges = collect(data.graph.edges())
model = Model(optimizer)
@variable(model, x[nodes], Bin)
@objective(
model,
Min,
sum(-data.weights[i] * x[e[1]] * (1 - x[e[2]]) for (i, e) in enumerate(edges))
)
return JumpModel(model)
end
export MaxCutData, MaxCutGenerator, build_maxcut_model_jump

View File

@@ -13,7 +13,7 @@ function __init_problems_setcover__()
copy!(SetCoverGenerator, pyimport("miplearn.problems.setcover").SetCoverGenerator)
end
function build_setcover_model_jump(data::Any; optimizer=HiGHS.Optimizer)
function build_setcover_model_jump(data::Any; optimizer = HiGHS.Optimizer)
if data isa String
data = read_pkl_gz(data)
end

View File

@@ -10,10 +10,13 @@ global MaxWeightStableSetGenerator = PyNULL()
function __init_problems_stab__()
copy!(MaxWeightStableSetData, pyimport("miplearn.problems.stab").MaxWeightStableSetData)
copy!(MaxWeightStableSetGenerator, pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator)
copy!(
MaxWeightStableSetGenerator,
pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator,
)
end
function build_stab_model_jump(data::Any; optimizer=HiGHS.Optimizer)
function build_stab_model_jump(data::Any; optimizer = HiGHS.Optimizer)
nx = pyimport("networkx")
if data isa String
@@ -50,11 +53,7 @@ function build_stab_model_jump(data::Any; optimizer=HiGHS.Optimizer)
end
end
return JumpModel(
model,
cuts_separate=cuts_separate,
cuts_enforce=cuts_enforce,
)
return JumpModel(model, cuts_separate = cuts_separate, cuts_enforce = cuts_enforce)
end
export MaxWeightStableSetData, MaxWeightStableSetGenerator, build_stab_model_jump

View File

@@ -9,7 +9,10 @@ global TravelingSalesmanGenerator = PyNULL()
function __init_problems_tsp__()
copy!(TravelingSalesmanData, pyimport("miplearn.problems.tsp").TravelingSalesmanData)
copy!(TravelingSalesmanGenerator, pyimport("miplearn.problems.tsp").TravelingSalesmanGenerator)
copy!(
TravelingSalesmanGenerator,
pyimport("miplearn.problems.tsp").TravelingSalesmanGenerator,
)
end
function build_tsp_model_jump(data::Any; optimizer)
@@ -19,17 +22,15 @@ function build_tsp_model_jump(data::Any; optimizer)
data = read_pkl_gz(data)
end
model = Model(optimizer)
edges = [(i, j) for i in 1:data.n_cities for j in (i+1):data.n_cities]
edges = [(i, j) for i = 1:data.n_cities for j = (i+1):data.n_cities]
x = @variable(model, x[edges], Bin)
@objective(model, Min, sum(
x[(i, j)] * data.distances[i, j] for (i, j) in edges
))
@objective(model, Min, sum(x[(i, j)] * data.distances[i, j] for (i, j) in edges))
# Eq: Must choose two edges adjacent to each node
@constraint(
model,
eq_degree[i in 1:data.n_cities],
sum(x[(min(i, j), max(i, j))] for j in 1:data.n_cities if i != j) == 2
sum(x[(min(i, j), max(i, j))] for j = 1:data.n_cities if i != j) == 2
)
function lazy_separate(cb_data)
@@ -41,10 +42,8 @@ function build_tsp_model_jump(data::Any; optimizer)
for component in nx.connected_components(graph)
if length(component) < data.n_cities
cut_edges = [
[e[1], e[2]]
for e in edges
if (e[1] component && e[2] component)
||
[e[1], e[2]] for
e in edges if (e[1] component && e[2] component) ||
(e[1] component && e[2] component)
]
push!(violations, cut_edges)
@@ -63,9 +62,9 @@ function build_tsp_model_jump(data::Any; optimizer)
return JumpModel(
model,
lazy_enforce=lazy_enforce,
lazy_separate=lazy_separate,
lp_optimizer=optimizer,
lazy_enforce = lazy_enforce,
lazy_separate = lazy_separate,
lp_optimizer = optimizer,
)
end

View File

@@ -18,7 +18,7 @@ Base.@kwdef mutable struct _JumpModelExtData
cuts_separate::Union{Function,Nothing} = nothing
lazy_enforce::Union{Function,Nothing} = nothing
lazy_separate::Union{Function,Nothing} = nothing
lp_optimizer
lp_optimizer::Any
end
function JuMP.copy_extension_data(
@@ -26,9 +26,7 @@ function JuMP.copy_extension_data(
new_model::AbstractModel,
::AbstractModel,
)
new_model.ext[:miplearn] = _JumpModelExtData(
lp_optimizer=old_ext.lp_optimizer
)
new_model.ext[:miplearn] = _JumpModelExtData(lp_optimizer = old_ext.lp_optimizer)
end
# -----------------------------------------------------------------------------
@@ -91,14 +89,27 @@ function _extract_after_load_vars(model::JuMP.Model, h5)
for v in vars
]
types = [JuMP.is_binary(v) ? "B" : JuMP.is_integer(v) ? "I" : "C" for v in vars]
obj = objective_function(model, AffExpr)
obj_coeffs = [v keys(obj.terms) ? obj.terms[v] : 0.0 for v in vars]
# Linear obj terms
obj = objective_function(model, QuadExpr)
obj_coeffs_linear = [v keys(obj.aff.terms) ? obj.aff.terms[v] : 0.0 for v in vars]
# Quadratic obj terms
if length(obj.terms) > 0
nvars = length(vars)
obj_coeffs_quad = zeros(nvars, nvars)
for (pair, coeff) in obj.terms
obj_coeffs_quad[pair.a.index.value, pair.b.index.value] = coeff
end
h5.put_array("static_var_obj_coeffs_quad", obj_coeffs_quad)
end
h5.put_array("static_var_names", to_str_array(JuMP.name.(vars)))
h5.put_array("static_var_types", to_str_array(types))
h5.put_array("static_var_lower_bounds", lb)
h5.put_array("static_var_upper_bounds", ub)
h5.put_array("static_var_obj_coeffs", obj_coeffs)
h5.put_scalar("static_obj_offset", obj.constant)
h5.put_array("static_var_obj_coeffs", obj_coeffs_linear)
h5.put_scalar("static_obj_offset", obj.aff.constant)
end
function _extract_after_load_constrs(model::JuMP.Model, h5)
@@ -145,7 +156,7 @@ function _extract_after_load_constrs(model::JuMP.Model, h5)
end
end
if isempty(names)
error("no model constraints found; note that MIPLearn ignores unnamed constraints")
return
end
lhs = sparse(lhs_rows, lhs_cols, lhs_values, length(rhs), JuMP.num_variables(model))
h5.put_sparse("static_constr_lhs", lhs)
@@ -284,9 +295,11 @@ function _extract_after_mip(model::JuMP.Model, h5)
# Slacks
lhs = h5.get_sparse("static_constr_lhs")
if lhs !== nothing
rhs = h5.get_array("static_constr_rhs")
slacks = abs.(lhs * x - rhs)
h5.put_array("mip_constr_slacks", slacks)
end
# Cuts and lazy constraints
ext = model.ext[:miplearn]
@@ -297,7 +310,7 @@ end
function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
vars = [variable_by_name(model, v) for v in var_names]
for (i, var) in enumerate(vars)
fix(var, var_values[i], force=true)
fix(var, var_values[i], force = true)
end
end
@@ -392,19 +405,19 @@ function __init_solvers_jump__()
function __init__(
self,
inner;
cuts_enforce::Union{Function,Nothing}=nothing,
cuts_separate::Union{Function,Nothing}=nothing,
lazy_enforce::Union{Function,Nothing}=nothing,
lazy_separate::Union{Function,Nothing}=nothing,
lp_optimizer=HiGHS.Optimizer,
cuts_enforce::Union{Function,Nothing} = nothing,
cuts_separate::Union{Function,Nothing} = nothing,
lazy_enforce::Union{Function,Nothing} = nothing,
lazy_separate::Union{Function,Nothing} = nothing,
lp_optimizer = HiGHS.Optimizer,
)
self.inner = inner
self.inner.ext[:miplearn] = _JumpModelExtData(
cuts_enforce=cuts_enforce,
cuts_separate=cuts_separate,
lazy_enforce=lazy_enforce,
lazy_separate=lazy_separate,
lp_optimizer=lp_optimizer,
cuts_enforce = cuts_enforce,
cuts_separate = cuts_separate,
lazy_enforce = lazy_enforce,
lazy_separate = lazy_separate,
lp_optimizer = lp_optimizer,
)
end
@@ -414,7 +427,7 @@ function __init_solvers_jump__()
constrs_lhs,
constrs_sense,
constrs_rhs,
stats=nothing,
stats = nothing,
) = _add_constrs(
self.inner,
from_str_array(var_names),
@@ -430,14 +443,14 @@ function __init_solvers_jump__()
extract_after_mip(self, h5) = _extract_after_mip(self.inner, h5)
fix_variables(self, var_names, var_values, stats=nothing) =
fix_variables(self, var_names, var_values, stats = nothing) =
_fix_variables(self.inner, from_str_array(var_names), var_values, stats)
optimize(self) = _optimize(self.inner)
relax(self) = Class(_relax(self.inner))
set_warm_starts(self, var_names, var_values, stats=nothing) =
set_warm_starts(self, var_names, var_values, stats = nothing) =
_set_warm_starts(self.inner, from_str_array(var_names), var_values, stats)
write(self, filename) = _write(self.inner, filename)

View File

@@ -17,6 +17,7 @@ MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68"
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[compat]

BIN
test/fixtures/bell5.h5 vendored

Binary file not shown.

BIN
test/fixtures/vpm2.h5 vendored

Binary file not shown.

View File

@@ -86,11 +86,7 @@ function bb_run(optimizer_name, optimizer; large = true)
BB.ReliabilityBranching(aggregation = :min, collect = true),
]
h5 = H5File("$FIXTURES/$instance.h5")
mip_lower_bound = h5.get_scalar("mip_lower_bound")
mip_upper_bound = h5.get_scalar("mip_upper_bound")
mip_sense = h5.get_scalar("mip_sense")
mip_primal_bound =
mip_sense == "min" ? mip_upper_bound : mip_lower_bound
mip_obj_bound = h5.get_scalar("mip_obj_bound")
h5.file.close()
mip = BB.init(optimizer)
@@ -98,7 +94,7 @@ function bb_run(optimizer_name, optimizer; large = true)
@info optimizer_name, branch_rule, instance
@time BB.solve!(
mip,
initial_primal_bound = mip_primal_bound,
initial_primal_bound = mip_obj_bound,
print_interval = 1,
node_limit = 25,
branch_rule = branch_rule,

View File

@@ -0,0 +1,23 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using HiGHS
function test_cuts_tableau_gmi()
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
collect_gmi(mps_filename, optimizer = HiGHS.Optimizer)
h5 = H5File(h5_filename, "r")
try
cuts_lb = h5.get_array("cuts_lb")
cuts_ub = h5.get_array("cuts_ub")
cuts_lhs = h5.get_sparse("cuts_lhs")
n_cuts = length(cuts_lb)
@test n_cuts > 0
@test n_cuts == length(cuts_ub)
@test cuts_lhs.shape[1] == n_cuts
finally
h5.close()
end
end

View File

@@ -0,0 +1,70 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using SCIP
using HiGHS
using MIPLearn.Cuts
function test_cuts_tableau_gmi_dual_collect()
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
stats = collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
h5 = H5File(h5_filename, "r")
try
cuts_basis_vars = h5.get_array("cuts_basis_vars")
cuts_basis_sizes = h5.get_array("cuts_basis_sizes")
cuts_rows = h5.get_array("cuts_rows")
@test size(cuts_basis_vars) == (15, 402)
@test size(cuts_basis_sizes) == (15, 4)
@test size(cuts_rows) == (15,)
finally
h5.close()
end
end
function test_cuts_tableau_gmi_dual_usage()
function build_model(mps_filename)
model = read_from_file(mps_filename)
set_optimizer(model, SCIP.Optimizer)
return JumpModel(model)
end
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
rm(h5_filename, force=true)
# Run basic collector
bc = BasicCollector(write_mps = false, skip_lp = true)
bc.collect([mps_filename], build_model)
# Run dual GMI collector
@info "Running dual GMI collector..."
collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
# # Test expert component
# solver = LearningSolver(
# components = [
# ExpertPrimalComponent(action = SetWarmStart()),
# ExpertDualGmiComponent(),
# ],
# skip_lp = true,
# )
# solver.optimize(mps_filename, build_model)
# Test kNN component
knn = KnnDualGmiComponent(
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"]),
k = 2,
)
knn.fit([h5_filename, h5_filename])
solver = LearningSolver(
components = [
ExpertPrimalComponent(action = SetWarmStart()),
knn,
],
skip_lp = true,
)
solver.optimize(mps_filename, build_model)
return
end

View File

@@ -19,9 +19,12 @@ include("BB/test_bb.jl")
include("components/test_cuts.jl")
include("components/test_lazy.jl")
include("Cuts/BlackBox/test_cplex.jl")
include("Cuts/tableau/test_gmi.jl")
include("Cuts/tableau/test_gmi_dual.jl")
include("problems/test_setcover.jl")
include("problems/test_stab.jl")
include("problems/test_tsp.jl")
include("problems/test_maxcut.jl")
include("solvers/test_jump.jl")
include("test_io.jl")
include("test_usage.jl")
@@ -35,6 +38,7 @@ function runtests()
test_problems_setcover()
test_problems_stab()
test_problems_tsp()
test_problems_maxcut()
test_solvers_jump()
test_usage()
test_cuts()
@@ -43,8 +47,8 @@ function runtests()
end
function format()
JuliaFormatter.format(BASEDIR, verbose=true)
JuliaFormatter.format("$BASEDIR/../../src", verbose=true)
JuliaFormatter.format(BASEDIR, verbose = true)
JuliaFormatter.format("$BASEDIR/../../src", verbose = true)
return
end

View File

@@ -10,34 +10,32 @@ function gen_stab()
randint = pyimport("scipy.stats").randint
np.random.seed(42)
gen = MaxWeightStableSetGenerator(
w=uniform(10.0, scale=1.0),
n=randint(low=50, high=51),
p=uniform(loc=0.5, scale=0.0),
fix_graph=true,
w = uniform(10.0, scale = 1.0),
n = randint(low = 50, high = 51),
p = uniform(loc = 0.5, scale = 0.0),
fix_graph = true,
)
data = gen.generate(1)
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="stab-n50-")
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "stab-n50-")
collector = BasicCollector()
collector.collect(
data_filenames,
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
progress=true,
verbose=true,
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
progress = true,
verbose = true,
)
end
function test_cuts()
data_filenames = ["$BASEDIR/../fixtures/stab-n50-00000.pkl.gz"]
clf = pyimport("sklearn.dummy").DummyClassifier()
extractor = H5FieldsExtractor(
instance_fields=["static_var_obj_coeffs"],
)
comp = MemorizingCutsComponent(clf=clf, extractor=extractor)
solver = LearningSolver(components=[comp])
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
comp = MemorizingCutsComponent(clf = clf, extractor = extractor)
solver = LearningSolver(components = [comp])
solver.fit(data_filenames)
stats = solver.optimize(
model, stats = solver.optimize(
data_filenames[1],
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
)
@test stats["Cuts: AOT"] > 0
end

View File

@@ -11,36 +11,34 @@ function gen_tsp()
np.random.seed(42)
gen = TravelingSalesmanGenerator(
x=uniform(loc=0.0, scale=1000.0),
y=uniform(loc=0.0, scale=1000.0),
n=randint(low=20, high=21),
gamma=uniform(loc=1.0, scale=0.25),
fix_cities=true,
round=true,
x = uniform(loc = 0.0, scale = 1000.0),
y = uniform(loc = 0.0, scale = 1000.0),
n = randint(low = 20, high = 21),
gamma = uniform(loc = 1.0, scale = 0.25),
fix_cities = true,
round = true,
)
data = gen.generate(1)
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="tsp-n20-")
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "tsp-n20-")
collector = BasicCollector()
collector.collect(
data_filenames,
data -> build_tsp_model_jump(data, optimizer=GLPK.Optimizer),
progress=true,
verbose=true,
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
progress = true,
verbose = true,
)
end
function test_lazy()
data_filenames = ["$BASEDIR/../fixtures/tsp-n20-00000.pkl.gz"]
clf = pyimport("sklearn.dummy").DummyClassifier()
extractor = H5FieldsExtractor(
instance_fields=["static_var_obj_coeffs"],
)
comp = MemorizingLazyComponent(clf=clf, extractor=extractor)
solver = LearningSolver(components=[comp])
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
comp = MemorizingLazyComponent(clf = clf, extractor = extractor)
solver = LearningSolver(components = [comp])
solver.fit(data_filenames)
stats = solver.optimize(
model, stats = solver.optimize(
data_filenames[1],
data -> build_tsp_model_jump(data, optimizer=GLPK.Optimizer),
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
)
@test stats["Lazy Constraints: AOT"] > 0
end

View File

@@ -0,0 +1,54 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using PyCall
function test_problems_maxcut()
np = pyimport("numpy")
random = pyimport("random")
scipy_stats = pyimport("scipy.stats")
randint = scipy_stats.randint
uniform = scipy_stats.uniform
# Set random seed
random.seed(42)
np.random.seed(42)
# Build random instance
data = MaxCutGenerator(
n = randint(low = 10, high = 11),
p = uniform(loc = 0.5, scale = 0.0),
fix_graph = false,
).generate(
1,
)[1]
# Build model
model = build_maxcut_model_jump(data, optimizer = SCIP.Optimizer)
# Check static features
h5 = H5File(tempname(), "w")
model.extract_after_load(h5)
obj_linear = h5.get_array("static_var_obj_coeffs")
obj_quad = h5.get_array("static_var_obj_coeffs_quad")
@test obj_linear == [3.0, 1.0, 3.0, 1.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0]
@test obj_quad == [
0.0 0.0 -1.0 1.0 -1.0 0.0 0.0 0.0 -1.0 -1.0
0.0 0.0 1.0 -1.0 0.0 -1.0 -1.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0
0.0 0.0 0.0 0.0 0.0 -1.0 1.0 -1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
]
# Check optimal solution
model.optimize()
model.extract_after_mip(h5)
@test h5.get_scalar("mip_obj_value") == -4
h5.close()
end

View File

@@ -8,11 +8,11 @@ using SCIP
function test_problems_stab()
nx = pyimport("networkx")
data = MaxWeightStableSetData(
graph=nx.gnp_random_graph(25, 0.5, seed=42),
weights=repeat([1.0], 25),
graph = nx.gnp_random_graph(25, 0.5, seed = 42),
weights = repeat([1.0], 25),
)
h5 = H5File(tempname(), "w")
model = build_stab_model_jump(data, optimizer=SCIP.Optimizer)
model = build_stab_model_jump(data, optimizer = SCIP.Optimizer)
model.extract_after_load(h5)
model.optimize()
model.extract_after_mip(h5)

View File

@@ -10,17 +10,12 @@ function test_problems_tsp()
squareform = pyimport("scipy.spatial.distance").squareform
data = TravelingSalesmanData(
n_cities=6,
distances=squareform(pdist([
[0.0, 0.0],
[1.0, 0.0],
[2.0, 0.0],
[3.0, 0.0],
[0.0, 1.0],
[3.0, 1.0],
])),
n_cities = 6,
distances = squareform(
pdist([[0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [3.0, 0.0], [0.0, 1.0], [3.0, 1.0]]),
),
)
model = build_tsp_model_jump(data, optimizer=GLPK.Optimizer)
model = build_tsp_model_jump(data, optimizer = GLPK.Optimizer)
model.optimize()
@test objective_value(model.inner) == 8.0
return

View File

@@ -4,6 +4,7 @@
using MIPLearn
using JLD2
using SparseArrays
struct _TestStruct
n::Int
@@ -35,6 +36,8 @@ function test_h5()
_test_roundtrip_array(h5, [1, 2, 3])
_test_roundtrip_array(h5, [1.0, 2.0, 3.0])
_test_roundtrip_str_array(h5, ["A", "BB", "CCC"])
_test_roundtrip_sparse(h5, sparse([1; 2; 3], [1; 2; 3], [1; 2; 3]))
# _test_roundtrip_sparse(h5, sparse([1; 2; 3], [1; 2; 3], [1; 2; 3], 4, 4))
@test h5.get_array("unknown-key") === nothing
h5.close()
end
@@ -46,7 +49,7 @@ function test_jld2()
_TestStruct(2, [1.0, 2.0, 3.0]),
_TestStruct(3, [3.0, 3.0, 3.0]),
]
filenames = write_jld2(data, dirname, prefix="obj")
filenames = write_jld2(data, dirname, prefix = "obj")
@test all(
filenames .==
["$dirname/obj00001.jld2", "$dirname/obj00002.jld2", "$dirname/obj00003.jld2"],
@@ -79,3 +82,11 @@ function _test_roundtrip_str_array(h5, original)
@test recovered !== nothing
@test all(original .== recovered)
end
function _test_roundtrip_sparse(h5, original)
h5.put_sparse("key", original)
recovered = MIPLearn.convert(SparseMatrixCSC, h5.get_sparse("key"))
@test recovered !== nothing
@test size(original) == size(recovered)
@test all(original .== recovered)
end

View File

@@ -13,16 +13,16 @@ function test_usage()
@debug "Setting up LearningSolver..."
solver = LearningSolver(
components=[
components = [
IndependentVarsPrimalComponent(
base_clf=SingleClassFix(
base_clf = SingleClassFix(
MinProbabilityClassifier(
base_clf=LogisticRegression(),
thresholds=[0.95, 0.95],
base_clf = LogisticRegression(),
thresholds = [0.95, 0.95],
),
),
extractor=AlvLouWeh2017Extractor(),
action=SetWarmStart(),
extractor = AlvLouWeh2017Extractor(),
action = SetWarmStart(),
),
],
)