mirror of
https://github.com/ANL-CEEESA/MIPLearn.jl.git
synced 2025-12-07 08:48:52 -06:00
Compare commits
64 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| aa11db99a2 | |||
| a4ff65275e | |||
| 295e29c351 | |||
| 67e706d727 | |||
| 407312e129 | |||
| e2e69415c1 | |||
| 9713873a34 | |||
| e2906a0a7e | |||
| 3ca5a4fec7 | |||
| 84acd6b72c | |||
| 8f3eb8adc4 | |||
| 65a6024c36 | |||
| bb59362571 | |||
| 5e2b0c2958 | |||
| 37f3abee42 | |||
| 1296182744 | |||
| 4158fccf12 | |||
| 97c5813e59 | |||
| 55b0a2bbca | |||
| b8d836de10 | |||
| 1c44cb4e86 | |||
| 8edd031bbe | |||
| 0a0d133161 | |||
| 0b5ec4740e | |||
| 05e7d1619c | |||
| d351d84d58 | |||
| 1aaf4ebdc4 | |||
| 5662e5c2e6 | |||
| 63bbd750fb | |||
| 6c903d0b19 | |||
| c3a8fa6a08 | |||
| 5c522dbc5f | |||
| a9f1b2c394 | |||
| 2ea0043c03 | |||
| 9ac2f74856 | |||
| 672bb220c1 | |||
| 20a7cfb42d | |||
| b6ba75c3dc | |||
| a5a3690bb6 | |||
| e5a2550c21 | |||
| 011a106d20 | |||
| 006ace00e7 | |||
| 46ed6859f2 | |||
| 15dfcac32e | |||
|
c5fe6bf712
|
|||
|
24d93c8894
|
|||
|
ffea599af3
|
|||
|
2f16f04878
|
|||
|
70d2ee5883
|
|||
|
92fd3c3e32
|
|||
|
77c7e94927
|
|||
|
24532614e5
|
|||
|
fd655b2291
|
|||
|
6609254105
|
|||
|
5728098614
|
|||
|
627952a083
|
|||
|
1bd4917cca
|
|||
|
f89903cf68
|
|||
|
beab75a16d
|
|||
|
00fe4d07d2
|
|||
|
1c204d765e
|
|||
|
93e604817b
|
|||
|
e9deac94a5
|
|||
|
9c61b98cb9
|
10
Project.toml
10
Project.toml
@@ -1,11 +1,12 @@
|
||||
name = "MIPLearn"
|
||||
uuid = "2b1277c3-b477-4c49-a15e-7ba350325c68"
|
||||
authors = ["Alinson S Xavier <git@axavier.org>"]
|
||||
version = "0.4.0"
|
||||
version = "0.4.2"
|
||||
|
||||
[deps]
|
||||
Conda = "8f4d0f93-b110-5947-807f-2305c1781a2d"
|
||||
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
|
||||
Gurobi = "2e9cd046-0924-5485-92f1-d5272153d98b"
|
||||
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
|
||||
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
|
||||
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
|
||||
@@ -15,10 +16,12 @@ KLU = "ef3ab10e-7fda-4108-b977-705223b18434"
|
||||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
|
||||
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
|
||||
PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
|
||||
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
|
||||
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
|
||||
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
|
||||
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
|
||||
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
|
||||
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
||||
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
|
||||
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
|
||||
@@ -26,16 +29,19 @@ TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
|
||||
[compat]
|
||||
Conda = "1"
|
||||
DataStructures = "0.18"
|
||||
Gurobi = "1.7.5"
|
||||
HDF5 = "0.16"
|
||||
HiGHS = "1"
|
||||
JLD2 = "0.4"
|
||||
JSON = "0.21"
|
||||
julia = "1"
|
||||
JuMP = "1"
|
||||
KLU = "0.4"
|
||||
MathOptInterface = "1"
|
||||
OrderedCollections = "1"
|
||||
PrecompileTools = "1"
|
||||
PyCall = "1"
|
||||
Requires = "1"
|
||||
SCIP = "0.12"
|
||||
Statistics = "1"
|
||||
TimerOutputs = "0.5"
|
||||
julia = "1"
|
||||
|
||||
2
deps/build.jl
vendored
2
deps/build.jl
vendored
@@ -5,7 +5,7 @@ function install_miplearn()
|
||||
Conda.update()
|
||||
pip = joinpath(dirname(pyimport("sys").executable), "pip")
|
||||
isfile(pip) || error("$pip: invalid path")
|
||||
run(`$pip install miplearn==0.4.0`)
|
||||
run(`$pip install miplearn==0.4.4`)
|
||||
end
|
||||
|
||||
install_miplearn()
|
||||
|
||||
@@ -6,7 +6,7 @@ using Printf
|
||||
|
||||
function print_progress_header()
|
||||
@printf(
|
||||
"%8s %9s %9s %13s %13s %9s %6s %13s %6s %-24s %9s %9s %6s %6s",
|
||||
"%8s %9s %9s %13s %13s %9s %9s %13s %9s %-24s %9s %9s %6s %6s",
|
||||
"time",
|
||||
"processed",
|
||||
"pending",
|
||||
@@ -46,7 +46,7 @@ function print_progress(
|
||||
branch_ub = @sprintf("%9.2f", last(node.branch_ub))
|
||||
end
|
||||
@printf(
|
||||
"%8.2f %9d %9d %13.6e %13.6e %9.2e %6d %13.6e %6s %-24s %9s %9s %6d %6d",
|
||||
"%8.2f %9d %9d %13.6e %13.6e %9.2e %9d %13.6e %9s %-24s %9s %9s %6d %6d",
|
||||
time_elapsed,
|
||||
pool.processed,
|
||||
length(pool.processing) + length(pool.pending),
|
||||
|
||||
@@ -134,7 +134,11 @@ function _get_int_variables(
|
||||
var_ub = constr.upper
|
||||
MOI.delete(optimizer, _upper_bound_index(var))
|
||||
end
|
||||
MOI.add_constraint(optimizer, var, MOI.Interval(var_lb, var_ub))
|
||||
MOI.add_constraint(
|
||||
optimizer,
|
||||
MOI.VariableIndex(var.index),
|
||||
MOI.Interval(var_lb, var_ub),
|
||||
)
|
||||
end
|
||||
push!(vars, var)
|
||||
push!(lb, var_lb)
|
||||
|
||||
@@ -4,15 +4,22 @@
|
||||
|
||||
module Cuts
|
||||
|
||||
using PyCall
|
||||
|
||||
import ..to_str_array
|
||||
|
||||
include("tableau/structs.jl")
|
||||
|
||||
# include("blackbox/cplex.jl")
|
||||
include("tableau/collect.jl")
|
||||
include("tableau/numerics.jl")
|
||||
include("tableau/gmi.jl")
|
||||
include("tableau/gmi_dual.jl")
|
||||
include("tableau/moi.jl")
|
||||
include("tableau/tableau.jl")
|
||||
include("tableau/transform.jl")
|
||||
|
||||
function __init__()
|
||||
__init_gmi_dual__()
|
||||
end
|
||||
|
||||
end # module
|
||||
|
||||
@@ -1,184 +0,0 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import ..H5File
|
||||
|
||||
using OrderedCollections
|
||||
|
||||
function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_round = 100)
|
||||
@info mps_filename
|
||||
reset_timer!()
|
||||
|
||||
# Open HDF5 file
|
||||
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
|
||||
h5 = H5File(h5_filename)
|
||||
|
||||
# Read optimal solution
|
||||
sol_opt_dict = Dict(
|
||||
zip(
|
||||
h5.get_array("static_var_names"),
|
||||
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
||||
),
|
||||
)
|
||||
|
||||
# Read optimal value
|
||||
obj_mip = h5.get_scalar("mip_lower_bound")
|
||||
if obj_mip === nothing
|
||||
obj_mip = h5.get_scalar("mip_obj_value")
|
||||
end
|
||||
obj_lp = nothing
|
||||
h5.file.close()
|
||||
|
||||
# Define relative MIP gap
|
||||
gap(v) = 100 * abs(obj_mip - v) / abs(v)
|
||||
|
||||
# Initialize stats
|
||||
stats_obj = []
|
||||
stats_gap = []
|
||||
stats_ncuts = []
|
||||
stats_time_convert = 0
|
||||
stats_time_solve = 0
|
||||
stats_time_select = 0
|
||||
stats_time_tableau = 0
|
||||
stats_time_gmi = 0
|
||||
all_cuts = nothing
|
||||
|
||||
# Read problem
|
||||
model = read_from_file(mps_filename)
|
||||
|
||||
for round = 1:max_rounds
|
||||
@info "Round $(round)..."
|
||||
|
||||
stats_time_convert = @elapsed begin
|
||||
# Extract problem data
|
||||
data = ProblemData(model)
|
||||
|
||||
# Construct optimal solution vector (with correct variable sequence)
|
||||
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
||||
|
||||
# Assert optimal solution is feasible for the original problem
|
||||
@assert all(data.constr_lb .- 1e-3 .<= data.constr_lhs * sol_opt)
|
||||
@assert all(data.constr_lhs * sol_opt .<= data.constr_ub .+ 1e-3)
|
||||
|
||||
# Convert to standard form
|
||||
data_s, transforms = convert_to_standard_form(data)
|
||||
model_s = to_model(data_s)
|
||||
set_optimizer(model_s, optimizer)
|
||||
relax_integrality(model_s)
|
||||
|
||||
# Convert optimal solution to standard form
|
||||
sol_opt_s = forward(transforms, sol_opt)
|
||||
|
||||
# Assert converted solution is feasible for standard form problem
|
||||
@assert data_s.constr_lhs * sol_opt_s ≈ data_s.constr_lb
|
||||
end
|
||||
|
||||
# Optimize standard form
|
||||
optimize!(model_s)
|
||||
stats_time_solve += solve_time(model_s)
|
||||
obj = objective_value(model_s) + data_s.obj_offset
|
||||
if obj_lp === nothing
|
||||
obj_lp = obj
|
||||
push!(stats_obj, obj)
|
||||
push!(stats_gap, gap(obj))
|
||||
push!(stats_ncuts, 0)
|
||||
end
|
||||
if termination_status(model_s) != MOI.OPTIMAL
|
||||
return
|
||||
end
|
||||
|
||||
# Select tableau rows
|
||||
basis = get_basis(model_s)
|
||||
sol_frac = get_x(model_s)
|
||||
stats_time_select += @elapsed begin
|
||||
selected_rows =
|
||||
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
|
||||
end
|
||||
|
||||
# Compute selected tableau rows
|
||||
stats_time_tableau += @elapsed begin
|
||||
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
|
||||
|
||||
# Assert tableau rows have been computed correctly
|
||||
@assert tableau.lhs * sol_frac ≈ tableau.rhs
|
||||
@assert tableau.lhs * sol_opt_s ≈ tableau.rhs
|
||||
end
|
||||
|
||||
# Compute GMI cuts
|
||||
stats_time_gmi += @elapsed begin
|
||||
cuts_s = compute_gmi(data_s, tableau)
|
||||
|
||||
# Assert cuts have been generated correctly
|
||||
try
|
||||
assert_cuts_off(cuts_s, sol_frac)
|
||||
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
||||
catch
|
||||
@warn "Invalid cuts detected. Discarding round $round cuts and aborting."
|
||||
break
|
||||
end
|
||||
|
||||
# Abort if no cuts are left
|
||||
if length(cuts_s.lb) == 0
|
||||
@info "No cuts generated. Aborting."
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
# Add GMI cuts to original problem
|
||||
cuts = backwards(transforms, cuts_s)
|
||||
assert_does_not_cut_off(cuts, sol_opt)
|
||||
constrs = add_constraint_set(model, cuts)
|
||||
|
||||
# Optimize original form
|
||||
set_optimizer(model, optimizer)
|
||||
undo_relax = relax_integrality(model)
|
||||
optimize!(model)
|
||||
obj = objective_value(model)
|
||||
push!(stats_obj, obj)
|
||||
push!(stats_gap, gap(obj))
|
||||
|
||||
# Store useful cuts; drop useless ones from the problem
|
||||
useful = [abs(shadow_price(c)) > 1e-3 for c in constrs]
|
||||
drop = findall(useful .== false)
|
||||
keep = findall(useful .== true)
|
||||
delete.(model, constrs[drop])
|
||||
if all_cuts === nothing
|
||||
all_cuts = cuts
|
||||
else
|
||||
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
|
||||
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
|
||||
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
|
||||
end
|
||||
push!(stats_ncuts, length(all_cuts.lb))
|
||||
|
||||
undo_relax()
|
||||
end
|
||||
|
||||
# Store cuts
|
||||
if all_cuts !== nothing
|
||||
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
|
||||
h5 = H5File(h5_filename)
|
||||
h5.put_sparse("cuts_lhs", all_cuts.lhs)
|
||||
h5.put_array("cuts_lb", all_cuts.lb)
|
||||
h5.put_array("cuts_ub", all_cuts.ub)
|
||||
h5.file.close()
|
||||
end
|
||||
|
||||
return OrderedDict(
|
||||
"instance" => mps_filename,
|
||||
"max_rounds" => max_rounds,
|
||||
"rounds" => length(stats_obj) - 1,
|
||||
"time_convert" => stats_time_convert,
|
||||
"time_solve" => stats_time_solve,
|
||||
"time_tableau" => stats_time_tableau,
|
||||
"time_gmi" => stats_time_gmi,
|
||||
"obj_mip" => obj_mip,
|
||||
"obj_lp" => obj_lp,
|
||||
"stats_obj" => stats_obj,
|
||||
"stats_gap" => stats_gap,
|
||||
"stats_ncuts" => stats_ncuts,
|
||||
)
|
||||
end
|
||||
|
||||
export collect_gmi
|
||||
@@ -2,16 +2,196 @@
|
||||
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import ..H5File
|
||||
|
||||
using OrderedCollections
|
||||
using SparseArrays
|
||||
using Statistics
|
||||
using TimerOutputs
|
||||
|
||||
@inline frac(x::Float64) = x - floor(x)
|
||||
function collect_gmi(
|
||||
mps_filename;
|
||||
optimizer,
|
||||
max_rounds = 10,
|
||||
max_cuts_per_round = 100,
|
||||
atol = 1e-4,
|
||||
)
|
||||
reset_timer!()
|
||||
|
||||
# Open HDF5 file
|
||||
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
|
||||
h5 = H5File(h5_filename)
|
||||
|
||||
# Read optimal solution
|
||||
sol_opt_dict = Dict(
|
||||
zip(
|
||||
h5.get_array("static_var_names"),
|
||||
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
||||
),
|
||||
)
|
||||
|
||||
# Read optimal value
|
||||
obj_mip = h5.get_scalar("mip_lower_bound")
|
||||
if obj_mip === nothing
|
||||
obj_mip = h5.get_scalar("mip_obj_value")
|
||||
end
|
||||
obj_lp = h5.get_scalar("lp_obj_value")
|
||||
h5.file.close()
|
||||
|
||||
# Define relative MIP gap
|
||||
gap(v) = 100 * abs(obj_mip - v) / abs(v)
|
||||
|
||||
# Initialize stats
|
||||
stats_obj = []
|
||||
stats_gap = []
|
||||
stats_ncuts = []
|
||||
stats_time_convert = 0
|
||||
stats_time_solve = 0
|
||||
stats_time_select = 0
|
||||
stats_time_tableau = 0
|
||||
stats_time_gmi = 0
|
||||
all_cuts = nothing
|
||||
|
||||
# Read problem
|
||||
model = read_from_file(mps_filename)
|
||||
|
||||
for round = 1:max_rounds
|
||||
@info "Round $(round)..."
|
||||
|
||||
stats_time_convert = @elapsed begin
|
||||
# Extract problem data
|
||||
data = ProblemData(model)
|
||||
|
||||
# Construct optimal solution vector (with correct variable sequence)
|
||||
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
||||
|
||||
# Assert optimal solution is feasible for the original problem
|
||||
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
|
||||
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
|
||||
|
||||
# Convert to standard form
|
||||
data_s, transforms = convert_to_standard_form(data)
|
||||
model_s = to_model(data_s)
|
||||
set_optimizer(model_s, optimizer)
|
||||
relax_integrality(model_s)
|
||||
|
||||
# Convert optimal solution to standard form
|
||||
sol_opt_s = forward(transforms, sol_opt)
|
||||
|
||||
# Assert converted solution is feasible for standard form problem
|
||||
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
|
||||
end
|
||||
|
||||
# Optimize standard form
|
||||
optimize!(model_s)
|
||||
stats_time_solve += solve_time(model_s)
|
||||
obj = objective_value(model_s)
|
||||
|
||||
if round == 1
|
||||
# Assert standard form problem has same value as original
|
||||
assert_eq(obj, obj_lp)
|
||||
push!(stats_obj, obj)
|
||||
push!(stats_gap, gap(obj))
|
||||
push!(stats_ncuts, 0)
|
||||
end
|
||||
if termination_status(model_s) != MOI.OPTIMAL
|
||||
return
|
||||
end
|
||||
|
||||
# Select tableau rows
|
||||
basis = get_basis(model_s)
|
||||
sol_frac = get_x(model_s)
|
||||
stats_time_select += @elapsed begin
|
||||
selected_rows =
|
||||
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
|
||||
end
|
||||
|
||||
# Compute selected tableau rows
|
||||
stats_time_tableau += @elapsed begin
|
||||
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
|
||||
|
||||
# Assert tableau rows have been computed correctly
|
||||
assert_eq(tableau.lhs * sol_frac, tableau.rhs)
|
||||
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
|
||||
end
|
||||
|
||||
# Compute GMI cuts
|
||||
stats_time_gmi += @elapsed begin
|
||||
cuts_s = compute_gmi(data_s, tableau)
|
||||
|
||||
# Assert cuts have been generated correctly
|
||||
assert_cuts_off(cuts_s, sol_frac)
|
||||
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
||||
|
||||
# Abort if no cuts are left
|
||||
if length(cuts_s.lb) == 0
|
||||
@info "No cuts generated. Stopping."
|
||||
break
|
||||
end
|
||||
end
|
||||
|
||||
# Add GMI cuts to original problem
|
||||
cuts = backwards(transforms, cuts_s)
|
||||
assert_does_not_cut_off(cuts, sol_opt)
|
||||
constrs = add_constraint_set(model, cuts)
|
||||
|
||||
# Optimize original form
|
||||
set_optimizer(model, optimizer)
|
||||
undo_relax = relax_integrality(model)
|
||||
optimize!(model)
|
||||
obj = objective_value(model)
|
||||
push!(stats_obj, obj)
|
||||
push!(stats_gap, gap(obj))
|
||||
|
||||
# Store useful cuts; drop useless ones from the problem
|
||||
useful = [abs(shadow_price(c)) > atol for c in constrs]
|
||||
drop = findall(useful .== false)
|
||||
keep = findall(useful .== true)
|
||||
delete.(model, constrs[drop])
|
||||
if all_cuts === nothing
|
||||
all_cuts = cuts
|
||||
else
|
||||
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
|
||||
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
|
||||
all_cuts.ub = [all_cuts.ub; cuts.ub[keep]]
|
||||
end
|
||||
push!(stats_ncuts, length(all_cuts.lb))
|
||||
|
||||
undo_relax()
|
||||
end
|
||||
|
||||
# Store cuts
|
||||
if all_cuts !== nothing
|
||||
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
|
||||
h5 = H5File(h5_filename)
|
||||
h5.put_sparse("cuts_lhs", all_cuts.lhs)
|
||||
h5.put_array("cuts_lb", all_cuts.lb)
|
||||
h5.put_array("cuts_ub", all_cuts.ub)
|
||||
h5.file.close()
|
||||
end
|
||||
|
||||
return OrderedDict(
|
||||
"instance" => mps_filename,
|
||||
"max_rounds" => max_rounds,
|
||||
"rounds" => length(stats_obj) - 1,
|
||||
"time_convert" => stats_time_convert,
|
||||
"time_solve" => stats_time_solve,
|
||||
"time_tableau" => stats_time_tableau,
|
||||
"time_gmi" => stats_time_gmi,
|
||||
"obj_mip" => obj_mip,
|
||||
"stats_obj" => stats_obj,
|
||||
"stats_gap" => stats_gap,
|
||||
"stats_ncuts" => stats_ncuts,
|
||||
)
|
||||
end
|
||||
|
||||
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
|
||||
candidate_rows = [
|
||||
r for
|
||||
r = 1:length(basis.var_basic) if (data.var_types[basis.var_basic[r]] != 'C') &&
|
||||
(frac(x[basis.var_basic[r]]) > atol)
|
||||
r for r = 1:length(basis.var_basic) if (
|
||||
(data.var_types[basis.var_basic[r]] != 'C') &&
|
||||
(frac(x[basis.var_basic[r]]) > atol) &&
|
||||
(frac2(x[basis.var_basic[r]]) > atol)
|
||||
)
|
||||
]
|
||||
candidate_vals = frac.(x[basis.var_basic[candidate_rows]])
|
||||
score = abs.(candidate_vals .- 0.5)
|
||||
@@ -19,66 +199,122 @@ function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
|
||||
return [candidate_rows[perm[i]] for i = 1:min(length(perm), max_rows)]
|
||||
end
|
||||
|
||||
function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::ConstraintSet
|
||||
nrows, ncols = size(tableau.lhs)
|
||||
ub = Float64[Inf for _ = 1:nrows]
|
||||
lb = Float64[0.999 for _ = 1:nrows]
|
||||
tableau_I, tableau_J, tableau_V = findnz(tableau.lhs)
|
||||
lhs_I = Int[]
|
||||
lhs_J = Int[]
|
||||
lhs_V = Float64[]
|
||||
# function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
|
||||
# @timeit "Initialization" begin
|
||||
# nrows, ncols = size(tableau.lhs)
|
||||
# ub = Float64[Inf for _ = 1:nrows]
|
||||
# lb = Float64[0.999 for _ = 1:nrows]
|
||||
# tableau_I, tableau_J, tableau_V = findnz(tableau.lhs)
|
||||
# lhs_I = Int[]
|
||||
# lhs_J = Int[]
|
||||
# lhs_V = Float64[]
|
||||
# end
|
||||
# @timeit "Compute coefficients" begin
|
||||
# for k = 1:nnz(tableau.lhs)
|
||||
# i::Int = tableau_I[k]
|
||||
# j::Int = tableau_J[k]
|
||||
# v::Float64 = 0.0
|
||||
# frac_alpha_j = frac(tableau_V[k])
|
||||
# alpha_j = tableau_V[k]
|
||||
# beta = frac(tableau.rhs[i])
|
||||
# if data.var_types[j] == 'C'
|
||||
# if alpha_j >= 0
|
||||
# v = alpha_j / beta
|
||||
# else
|
||||
# v = -alpha_j / (1 - beta)
|
||||
# end
|
||||
# else
|
||||
# if frac_alpha_j < beta
|
||||
# v = frac_alpha_j / beta
|
||||
# else
|
||||
# v = (1 - frac_alpha_j) / (1 - beta)
|
||||
# end
|
||||
# end
|
||||
# if abs(v) > 1e-8
|
||||
# push!(lhs_I, i)
|
||||
# push!(lhs_J, tableau_J[k])
|
||||
# push!(lhs_V, v)
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
# @timeit "Convert to ConstraintSet" begin
|
||||
# lhs = sparse(lhs_I, lhs_J, lhs_V, nrows, ncols)
|
||||
# cs = ConstraintSet(; lhs, ub, lb)
|
||||
# end
|
||||
# return cs
|
||||
# end
|
||||
|
||||
function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
|
||||
@timeit "Initialization" begin
|
||||
nrows::Int, ncols::Int = size(tableau.lhs)
|
||||
var_types::Vector{Char} = data.var_types
|
||||
tableau_rhs::Vector{Float64} = tableau.rhs
|
||||
tableau_I::Vector{Int}, tableau_J::Vector{Int}, tableau_V::Vector{Float64} = findnz(tableau.lhs)
|
||||
end
|
||||
|
||||
@timeit "Pre-allocation" begin
|
||||
cut_ub::Vector{Float64} = fill(Inf, nrows)
|
||||
cut_lb::Vector{Float64} = fill(0.999, nrows)
|
||||
nnz_tableau::Int = length(tableau_I)
|
||||
cut_lhs_I::Vector{Int} = Vector{Int}(undef, nnz_tableau)
|
||||
cut_lhs_J::Vector{Int} = Vector{Int}(undef, nnz_tableau)
|
||||
cut_lhs_V::Vector{Float64} = Vector{Float64}(undef, nnz_tableau)
|
||||
cut_hash::Vector{UInt64} = zeros(UInt64, nrows)
|
||||
nnz_count::Int = 0
|
||||
end
|
||||
|
||||
@timeit "Compute coefficients" begin
|
||||
for k = 1:nnz(tableau.lhs)
|
||||
@inbounds for k = 1:nnz_tableau
|
||||
i::Int = tableau_I[k]
|
||||
v::Float64 = 0.0
|
||||
alpha_j = frac(tableau_V[k])
|
||||
beta = frac(tableau.rhs[i])
|
||||
if data.var_types[i] == "C"
|
||||
j::Int = tableau_J[k]
|
||||
alpha_j::Float64 = tableau_V[k]
|
||||
frac_alpha_j::Float64 = alpha_j - floor(alpha_j)
|
||||
beta_i::Float64 = tableau_rhs[i]
|
||||
beta::Float64 = beta_i - floor(beta_i)
|
||||
v::Float64 = 0
|
||||
|
||||
# Compute coefficient
|
||||
if var_types[j] == 'C'
|
||||
if alpha_j >= 0
|
||||
v = alpha_j / beta
|
||||
else
|
||||
v = alpha_j / (1 - beta)
|
||||
v = -alpha_j / (1 - beta)
|
||||
end
|
||||
else
|
||||
if alpha_j <= beta
|
||||
v = alpha_j / beta
|
||||
if frac_alpha_j < beta
|
||||
v = frac_alpha_j / beta
|
||||
else
|
||||
v = (1 - alpha_j) / (1 - beta)
|
||||
v = (1 - frac_alpha_j) / (1 - beta)
|
||||
end
|
||||
end
|
||||
if abs(v) > tol
|
||||
push!(lhs_I, i)
|
||||
push!(lhs_J, tableau_J[k])
|
||||
push!(lhs_V, v)
|
||||
|
||||
# Store if significant
|
||||
if abs(v) > 1e-8
|
||||
nnz_count += 1
|
||||
cut_lhs_I[nnz_count] = i
|
||||
cut_lhs_J[nnz_count] = j
|
||||
cut_lhs_V[nnz_count] = v
|
||||
cut_hash[i] = hash(j, cut_hash[i])
|
||||
cut_hash[i] = hash(v, cut_hash[i])
|
||||
end
|
||||
end
|
||||
lhs = sparse(lhs_I, lhs_J, lhs_V, nrows, ncols)
|
||||
end
|
||||
return ConstraintSet(; lhs, ub, lb)
|
||||
|
||||
@timeit "Resize arrays to actual size" begin
|
||||
resize!(cut_lhs_I, nnz_count)
|
||||
resize!(cut_lhs_J, nnz_count)
|
||||
resize!(cut_lhs_V, nnz_count)
|
||||
end
|
||||
|
||||
# TODO: Build cut in compressed row format instead of converting
|
||||
@timeit "Convert to ConstraintSet" begin
|
||||
cut_lhs::SparseMatrixCSC = sparse(cut_lhs_I, cut_lhs_J, cut_lhs_V, nrows, ncols)
|
||||
cs::ConstraintSet = ConstraintSet(; lhs=cut_lhs, ub=cut_ub, lb=cut_lb, hash=cut_hash)
|
||||
end
|
||||
|
||||
return cs
|
||||
end
|
||||
|
||||
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
|
||||
for i = 1:length(cuts.lb)
|
||||
val = cuts.lhs[i, :]' * x
|
||||
if (val <= cuts.ub[i] - tol) && (val >= cuts.lb[i] + tol)
|
||||
throw(ErrorException("inequality fails to cut off fractional solution"))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
|
||||
for i = 1:length(cuts.lb)
|
||||
val = cuts.lhs[i, :]' * x
|
||||
ub = cuts.ub[i]
|
||||
lb = cuts.lb[i]
|
||||
if (val >= ub) || (val <= lb)
|
||||
throw(
|
||||
ErrorException(
|
||||
"inequality $i cuts off integer solution ($lb <= $val <= $ub)",
|
||||
),
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
export compute_gmi, frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off
|
||||
export compute_gmi,
|
||||
frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off, collect_gmi
|
||||
|
||||
1289
src/Cuts/tableau/gmi_dual.jl
Normal file
1289
src/Cuts/tableau/gmi_dual.jl
Normal file
File diff suppressed because it is too large
Load Diff
@@ -9,6 +9,8 @@ function ProblemData(model::Model)::ProblemData
|
||||
|
||||
# Objective function
|
||||
obj = objective_function(model)
|
||||
obj_offset = obj.constant
|
||||
obj_sense = objective_sense(model)
|
||||
obj = [v ∈ keys(obj.terms) ? obj.terms[v] : 0.0 for v in vars]
|
||||
|
||||
# Variable types, lower bounds and upper bounds
|
||||
@@ -86,8 +88,9 @@ function ProblemData(model::Model)::ProblemData
|
||||
@assert length(constr_ub) == m
|
||||
|
||||
return ProblemData(
|
||||
obj_offset = 0.0;
|
||||
obj,
|
||||
obj_offset,
|
||||
obj_sense,
|
||||
constr_lb,
|
||||
constr_ub,
|
||||
constr_lhs,
|
||||
@@ -102,6 +105,7 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
|
||||
model = Model()
|
||||
|
||||
# Variables
|
||||
obj_expr = AffExpr(data.obj_offset)
|
||||
nvars = length(data.obj)
|
||||
@variable(model, x[1:nvars])
|
||||
for i = 1:nvars
|
||||
@@ -117,8 +121,9 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
|
||||
if isfinite(data.var_ub[i])
|
||||
set_upper_bound(x[i], data.var_ub[i])
|
||||
end
|
||||
set_objective_coefficient(model, x[i], data.obj[i])
|
||||
add_to_expression!(obj_expr, x[i], data.obj[i])
|
||||
end
|
||||
@objective(model, data.obj_sense, obj_expr)
|
||||
|
||||
# Constraints
|
||||
lhs = data.constr_lhs * x
|
||||
@@ -140,19 +145,9 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
|
||||
end
|
||||
|
||||
function add_constraint_set(model::JuMP.Model, cs::ConstraintSet)
|
||||
vars = all_variables(model)
|
||||
nrows, _ = size(cs.lhs)
|
||||
constrs = []
|
||||
for i = 1:nrows
|
||||
c = nothing
|
||||
if isinf(cs.ub[i])
|
||||
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars))
|
||||
elseif isinf(cs.lb[i])
|
||||
c = @constraint(model, dot(cs.lhs[i, :], vars) <= cs.ub[i])
|
||||
else
|
||||
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars) <= cs.ub[i])
|
||||
end
|
||||
push!(constrs, c)
|
||||
constrs = build_constraints(model, cs)
|
||||
for c in constrs
|
||||
add_constraint(model, c)
|
||||
end
|
||||
return constrs
|
||||
end
|
||||
@@ -164,4 +159,30 @@ function set_warm_start(model::JuMP.Model, x::Vector{Float64})
|
||||
end
|
||||
end
|
||||
|
||||
export to_model, ProblemData, add_constraint_set, set_warm_start
|
||||
function build_constraints(model::JuMP.Model, cs::ConstraintSet)
|
||||
vars = all_variables(model)
|
||||
nrows, _ = size(cs.lhs)
|
||||
constrs = []
|
||||
for i = 1:nrows
|
||||
# Build LHS expression
|
||||
row = cs.lhs[i, :]
|
||||
lhs_expr = AffExpr()
|
||||
for (offset, val) in enumerate(row.nzval)
|
||||
add_to_expression!(lhs_expr, vars[row.nzind[offset]], val)
|
||||
end
|
||||
|
||||
# Build JuMP constraint
|
||||
c = nothing
|
||||
if isinf(cs.ub[i])
|
||||
c = @build_constraint(cs.lb[i] <= lhs_expr)
|
||||
elseif isinf(cs.lb[i])
|
||||
c = @build_constraint(lhs_expr <= cs.ub[i])
|
||||
else
|
||||
c = @build_constraint(cs.lb[i] <= lhs_expr <= cs.ub[i])
|
||||
end
|
||||
push!(constrs, c)
|
||||
end
|
||||
return constrs
|
||||
end
|
||||
|
||||
export to_model, ProblemData, add_constraint_set, set_warm_start, build_constraints
|
||||
|
||||
52
src/Cuts/tableau/numerics.jl
Normal file
52
src/Cuts/tableau/numerics.jl
Normal file
@@ -0,0 +1,52 @@
|
||||
@inline frac(x::Float64) = x - floor(x)
|
||||
|
||||
@inline frac2(x::Float64) = ceil(x) - x
|
||||
|
||||
function assert_leq(a, b; atol = 0.01)
|
||||
if !all(a .<= b .+ atol)
|
||||
delta = a .- b
|
||||
for i in eachindex(delta)
|
||||
if delta[i] > atol
|
||||
@info "Assertion failed: a[$i] = $(a[i]) <= $(b[i]) = b[$i]"
|
||||
end
|
||||
end
|
||||
error("assert_leq failed")
|
||||
end
|
||||
end
|
||||
|
||||
function assert_eq(a, b; atol = 1e-4)
|
||||
if !all(abs.(a .- b) .<= atol)
|
||||
delta = abs.(a .- b)
|
||||
for i in eachindex(delta)
|
||||
if delta[i] > atol
|
||||
@info "Assertion failed: a[$i] = $(a[i]) == $(b[i]) = b[$i]"
|
||||
end
|
||||
end
|
||||
error("assert_eq failed")
|
||||
end
|
||||
end
|
||||
|
||||
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
|
||||
vals = cuts.lhs * x
|
||||
for i = 1:length(cuts.lb)
|
||||
if (vals[i] <= cuts.ub[i] - tol) && (vals[i] >= cuts.lb[i] + tol)
|
||||
throw(ErrorException("inequality $i fails to cut off fractional solution: $(cuts.lb[i]) <= $(vals[i]) <= $(cuts.ub[i])"))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
|
||||
vals = cuts.lhs * x
|
||||
for i = 1:length(cuts.lb)
|
||||
if (vals[i] >= cuts.ub[i]) || (vals[i] <= cuts.lb[i])
|
||||
throw(ErrorException("inequality $i cuts off integer solution: $(cuts.lb[i]) <= $(vals[i]) <= $(cuts.ub[i])"))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
function assert_int(x::Float64, tol=1e-5)
|
||||
fx = frac(x)
|
||||
if min(fx, 1 - fx) >= tol
|
||||
throw(ErrorException("Number must be integer: $x"))
|
||||
end
|
||||
end
|
||||
@@ -7,6 +7,7 @@ using SparseArrays
|
||||
Base.@kwdef mutable struct ProblemData
|
||||
obj::Vector{Float64}
|
||||
obj_offset::Float64
|
||||
obj_sense::Any
|
||||
constr_lb::Vector{Float64}
|
||||
constr_ub::Vector{Float64}
|
||||
constr_lhs::SparseMatrixCSC
|
||||
@@ -17,10 +18,10 @@ Base.@kwdef mutable struct ProblemData
|
||||
end
|
||||
|
||||
Base.@kwdef mutable struct Tableau
|
||||
obj::Any
|
||||
lhs::Any
|
||||
rhs::Any
|
||||
z::Any
|
||||
obj::Vector{Float64}
|
||||
lhs::SparseMatrixCSC
|
||||
rhs::Vector{Float64}
|
||||
z::Float64
|
||||
end
|
||||
|
||||
Base.@kwdef mutable struct Basis
|
||||
@@ -34,6 +35,7 @@ Base.@kwdef mutable struct ConstraintSet
|
||||
lhs::SparseMatrixCSC
|
||||
ub::Vector{Float64}
|
||||
lb::Vector{Float64}
|
||||
hash::Union{Nothing,Vector{UInt64}} = nothing
|
||||
end
|
||||
|
||||
export ProblemData, Tableau, Basis, ConstraintSet
|
||||
|
||||
@@ -4,48 +4,161 @@
|
||||
|
||||
using KLU
|
||||
using TimerOutputs
|
||||
using Gurobi
|
||||
|
||||
function get_basis(model::JuMP.Model)::Basis
|
||||
var_basic = Int[]
|
||||
var_nonbasic = Int[]
|
||||
constr_basic = Int[]
|
||||
constr_nonbasic = Int[]
|
||||
|
||||
# Variables
|
||||
for (i, var) in enumerate(all_variables(model))
|
||||
bstatus = MOI.get(model, MOI.VariableBasisStatus(), var)
|
||||
if bstatus == MOI.BASIC
|
||||
push!(var_basic, i)
|
||||
elseif bstatus == MOI.NONBASIC_AT_LOWER
|
||||
push!(var_nonbasic, i)
|
||||
else
|
||||
error("Unknown basis status: $bstatus")
|
||||
end
|
||||
if isa(unsafe_backend(model), Gurobi.Optimizer)
|
||||
return get_basis_gurobi(model)
|
||||
end
|
||||
|
||||
# Constraints
|
||||
constr_index = 1
|
||||
for (ftype, stype) in list_of_constraint_types(model)
|
||||
for constr in all_constraints(model, ftype, stype)
|
||||
if ftype == VariableRef
|
||||
# nop
|
||||
elseif ftype == AffExpr
|
||||
bstatus = MOI.get(model, MOI.ConstraintBasisStatus(), constr)
|
||||
if bstatus == MOI.BASIC
|
||||
push!(constr_basic, constr_index)
|
||||
elseif bstatus == MOI.NONBASIC
|
||||
push!(constr_nonbasic, constr_index)
|
||||
else
|
||||
error("Unknown basis status: $bstatus")
|
||||
end
|
||||
constr_index += 1
|
||||
@timeit "Initialization" begin
|
||||
var_basic = Int[]
|
||||
var_nonbasic = Int[]
|
||||
constr_basic = Int[]
|
||||
constr_nonbasic = Int[]
|
||||
nvars = num_variables(model)
|
||||
sizehint!(var_basic, nvars)
|
||||
sizehint!(var_nonbasic, nvars)
|
||||
end
|
||||
|
||||
@timeit "Query variables" begin
|
||||
for (i, var) in enumerate(all_variables(model))
|
||||
bstatus = MOI.get(model, MOI.VariableBasisStatus(), var)
|
||||
if bstatus == MOI.BASIC
|
||||
push!(var_basic, i)
|
||||
elseif bstatus == MOI.NONBASIC_AT_LOWER
|
||||
push!(var_nonbasic, i)
|
||||
else
|
||||
error("Unsupported constraint type: ($ftype, $stype)")
|
||||
error("Unknown basis status: $bstatus")
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
return Basis(; var_basic, var_nonbasic, constr_basic, constr_nonbasic)
|
||||
@timeit "Query constraints" begin
|
||||
constr_index = 1
|
||||
for (ftype, stype) in list_of_constraint_types(model)
|
||||
for constr in all_constraints(model, ftype, stype)
|
||||
if ftype == VariableRef
|
||||
# nop
|
||||
elseif ftype == AffExpr
|
||||
bstatus = MOI.get(model, MOI.ConstraintBasisStatus(), constr)
|
||||
if bstatus == MOI.BASIC
|
||||
push!(constr_basic, constr_index)
|
||||
elseif bstatus == MOI.NONBASIC
|
||||
push!(constr_nonbasic, constr_index)
|
||||
else
|
||||
error("Unknown basis status: $bstatus")
|
||||
end
|
||||
constr_index += 1
|
||||
else
|
||||
error("Unsupported constraint type: ($ftype, $stype)")
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@timeit "Build basis struct" begin
|
||||
basis = Basis(; var_basic, var_nonbasic, constr_basic, constr_nonbasic)
|
||||
end
|
||||
|
||||
return basis
|
||||
end
|
||||
|
||||
function set_basis(model::JuMP.Model, basis::Basis)
|
||||
if isa(unsafe_backend(model), Gurobi.Optimizer)
|
||||
# NOP
|
||||
return
|
||||
end
|
||||
|
||||
@timeit "Initialization" begin
|
||||
nvars = num_variables(model)
|
||||
gurobi_model = unsafe_backend(model).inner
|
||||
end
|
||||
|
||||
@timeit "Set variable basis" begin
|
||||
var_basis_statuses = Vector{Cint}(undef, nvars)
|
||||
fill!(var_basis_statuses, -1) # Default to GRB_NONBASIC_LOWER
|
||||
|
||||
for var_idx in basis.var_basic
|
||||
var_basis_statuses[var_idx] = 0 # GRB_BASIC
|
||||
end
|
||||
|
||||
ret = GRBsetintattrarray(gurobi_model, "VBasis", 0, nvars, var_basis_statuses)
|
||||
if ret != 0
|
||||
error("Failed to set variable basis statuses in Gurobi: error code $ret")
|
||||
end
|
||||
end
|
||||
|
||||
@timeit "Set constraint basis" begin
|
||||
nconstr = num_constraints(model, AffExpr, MOI.EqualTo{Float64})
|
||||
constr_basis_statuses = Vector{Cint}(undef, nconstr)
|
||||
fill!(constr_basis_statuses, -1) # Default to GRB_NONBASIC
|
||||
|
||||
for constr_idx in basis.constr_basic
|
||||
constr_basis_statuses[constr_idx] = 0 # GRB_BASIC
|
||||
end
|
||||
|
||||
ret = GRBsetintattrarray(gurobi_model, "CBasis", 0, nconstr, constr_basis_statuses)
|
||||
if ret != 0
|
||||
error("Failed to set constraint basis statuses in Gurobi: error code $ret")
|
||||
end
|
||||
end
|
||||
|
||||
return nothing
|
||||
end
|
||||
|
||||
function get_basis_gurobi(model::JuMP.Model)::Basis
|
||||
@timeit "Initialization" begin
|
||||
var_basic = Int[]
|
||||
var_nonbasic = Int[]
|
||||
constr_basic = Int[]
|
||||
constr_nonbasic = Int[]
|
||||
nvars = num_variables(model)
|
||||
sizehint!(var_basic, nvars)
|
||||
sizehint!(var_nonbasic, nvars)
|
||||
gurobi_model = unsafe_backend(model).inner
|
||||
end
|
||||
|
||||
@timeit "Query variables" begin
|
||||
var_basis_statuses = Vector{Cint}(undef, nvars)
|
||||
ret = GRBgetintattrarray(gurobi_model, "VBasis", 0, nvars, var_basis_statuses)
|
||||
if ret != 0
|
||||
error("Failed to get variable basis statuses from Gurobi: error code $ret")
|
||||
end
|
||||
for i in 1:nvars
|
||||
if var_basis_statuses[i] == 0 # GRB_BASIC
|
||||
push!(var_basic, i)
|
||||
elseif var_basis_statuses[i] == -1 # GRB_NONBASIC_LOWER
|
||||
push!(var_nonbasic, i)
|
||||
else
|
||||
error("Unknown variable basis status: $(var_basis_statuses[i])")
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@timeit "Query constraints" begin
|
||||
nconstr = num_constraints(model, AffExpr, MOI.EqualTo{Float64})
|
||||
constr_basis_statuses = Vector{Cint}(undef, nconstr)
|
||||
ret = GRBgetintattrarray(gurobi_model, "CBasis", 0, nconstr, constr_basis_statuses)
|
||||
if ret != 0
|
||||
error("Failed to get constraint basis statuses from Gurobi: error code $ret")
|
||||
end
|
||||
for i in 1:nconstr
|
||||
if constr_basis_statuses[i] == 0 # GRB_BASIC
|
||||
push!(constr_basic, i)
|
||||
elseif constr_basis_statuses[i] == -1 # GRB_NONBASIC
|
||||
push!(constr_nonbasic, i)
|
||||
else
|
||||
error("Unknown constraint basis status: $(constr_basis_statuses[i])")
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@timeit "Build basis struct" begin
|
||||
basis = Basis(; var_basic, var_nonbasic, constr_basic, constr_nonbasic)
|
||||
end
|
||||
|
||||
return basis
|
||||
end
|
||||
|
||||
function get_x(model::JuMP.Model)
|
||||
@@ -54,11 +167,16 @@ end
|
||||
|
||||
function compute_tableau(
|
||||
data::ProblemData,
|
||||
basis::Basis,
|
||||
x::Vector{Float64};
|
||||
basis::Basis;
|
||||
x::Union{Nothing,Vector{Float64}} = nothing,
|
||||
rows::Union{Vector{Int},Nothing} = nothing,
|
||||
tol = 1e-8,
|
||||
estimated_density = 0.10,
|
||||
)::Tableau
|
||||
if isnan(estimated_density) || estimated_density <= 0
|
||||
estimated_density = 0.10
|
||||
end
|
||||
|
||||
@timeit "Split data" begin
|
||||
nrows, ncols = size(data.constr_lhs)
|
||||
lhs_slacks = sparse(I, nrows, nrows)
|
||||
@@ -73,53 +191,80 @@ function compute_tableau(
|
||||
factor = klu(sparse(lhs_b'))
|
||||
end
|
||||
|
||||
@timeit "Compute tableau LHS" begin
|
||||
tableau_lhs_I = Int[]
|
||||
tableau_lhs_J = Int[]
|
||||
tableau_lhs_V = Float64[]
|
||||
for k = 1:length(rows)
|
||||
@timeit "Prepare inputs" begin
|
||||
i = rows[k]
|
||||
e = zeros(nrows)
|
||||
e[i] = 1.0
|
||||
end
|
||||
@timeit "Solve" begin
|
||||
sol = factor \ e
|
||||
end
|
||||
@timeit "Multiply" begin
|
||||
row = sol' * data.constr_lhs
|
||||
end
|
||||
@timeit "Sparsify & copy" begin
|
||||
for (j, v) in enumerate(row)
|
||||
if abs(v) < tol
|
||||
continue
|
||||
end
|
||||
push!(tableau_lhs_I, k)
|
||||
push!(tableau_lhs_J, j)
|
||||
push!(tableau_lhs_V, v)
|
||||
end
|
||||
end
|
||||
end
|
||||
tableau_lhs =
|
||||
sparse(tableau_lhs_I, tableau_lhs_J, tableau_lhs_V, length(rows), ncols)
|
||||
@timeit "Initialize arrays" begin
|
||||
num_rows = length(rows)
|
||||
tableau_rhs::Array{Float64} = zeros(num_rows)
|
||||
tableau_rowptr::Array{Int} = zeros(Int, num_rows + 1)
|
||||
tableau_colval::Array{Int} = Int[]
|
||||
tableau_nzval::Array{Float64} = Float64[]
|
||||
estimated_nnz::Int = round(num_rows * ncols * estimated_density)
|
||||
sizehint!(tableau_colval, estimated_nnz)
|
||||
sizehint!(tableau_nzval, estimated_nnz)
|
||||
e::Array{Float64} = zeros(nrows)
|
||||
sol::Array{Float64} = zeros(nrows)
|
||||
tableau_row::Array{Float64} = zeros(ncols)
|
||||
end
|
||||
|
||||
@timeit "Compute tableau RHS" begin
|
||||
tableau_rhs = [x[basis.var_basic]; zeros(length(basis.constr_basic))][rows]
|
||||
A = data.constr_lhs'
|
||||
b = data.constr_ub
|
||||
tableau_rowptr[1] = 1
|
||||
|
||||
@timeit "Process rows" begin
|
||||
for k in eachindex(rows)
|
||||
@timeit "Solve" begin
|
||||
fill!(e, 0.0)
|
||||
e[rows[k]] = 1.0
|
||||
ldiv!(sol, factor, e)
|
||||
end
|
||||
@timeit "Compute row" begin
|
||||
mul!(tableau_row, A, sol)
|
||||
tableau_rhs[k] = dot(sol, b)
|
||||
end
|
||||
needed_space = length(tableau_colval) + ncols
|
||||
if needed_space > estimated_nnz
|
||||
@timeit "Grow arrays" begin
|
||||
estimated_nnz *= 2
|
||||
sizehint!(tableau_colval, estimated_nnz)
|
||||
sizehint!(tableau_nzval, estimated_nnz)
|
||||
end
|
||||
end
|
||||
@timeit "Collect nonzeros for row" begin
|
||||
for j in 1:ncols
|
||||
val = tableau_row[j]
|
||||
if abs(val) > tol
|
||||
push!(tableau_colval, j)
|
||||
push!(tableau_nzval, val)
|
||||
end
|
||||
end
|
||||
end
|
||||
tableau_rowptr[k + 1] = length(tableau_colval) + 1
|
||||
end
|
||||
end
|
||||
|
||||
@timeit "Shrink arrays" begin
|
||||
sizehint!(tableau_colval, length(tableau_colval))
|
||||
sizehint!(tableau_nzval, length(tableau_nzval))
|
||||
end
|
||||
|
||||
@timeit "Build sparse matrix" begin
|
||||
tableau_lhs_transposed = SparseMatrixCSC(ncols, num_rows, tableau_rowptr, tableau_colval, tableau_nzval)
|
||||
tableau_lhs = transpose(tableau_lhs_transposed)
|
||||
end
|
||||
|
||||
@timeit "Compute tableau objective row" begin
|
||||
sol = factor \ obj_b
|
||||
tableau_obj = -data.obj' + sol' * data.constr_lhs
|
||||
tableau_obj[abs.(tableau_obj).<tol] .= 0
|
||||
tableau_obj = Array(tableau_obj')
|
||||
end
|
||||
|
||||
return Tableau(
|
||||
obj = tableau_obj,
|
||||
lhs = tableau_lhs,
|
||||
rhs = tableau_rhs,
|
||||
z = dot(data.obj, x),
|
||||
)
|
||||
# Compute z if solution is provided
|
||||
z = 0
|
||||
if x !== nothing
|
||||
z = dot(data.obj, x)
|
||||
end
|
||||
|
||||
return Tableau(obj = tableau_obj, lhs = tableau_lhs, rhs = tableau_rhs, z = z)
|
||||
end
|
||||
|
||||
export get_basis, get_x, compute_tableau
|
||||
export get_basis, get_basis_gurobi, set_basis, get_x, compute_tableau
|
||||
|
||||
@@ -96,46 +96,70 @@ Base.@kwdef mutable struct AddSlackVariables <: Transform
|
||||
end
|
||||
|
||||
function forward!(t::AddSlackVariables, data::ProblemData)
|
||||
nrows, ncols = size(data.constr_lhs)
|
||||
isequality = abs.(data.constr_ub .- data.constr_lb) .< 1e-6
|
||||
eq = [i for i = 1:nrows if isequality[i]]
|
||||
ge = [i for i = 1:nrows if isfinite(data.constr_lb[i]) && !isequality[i]]
|
||||
le = [i for i = 1:nrows if isfinite(data.constr_ub[i]) && !isequality[i]]
|
||||
EQ, GE, LE = length(eq), length(ge), length(le)
|
||||
|
||||
t.M1 = [
|
||||
I spzeros(ncols, GE + LE)
|
||||
data.constr_lhs[ge, :] spzeros(GE, GE + LE)
|
||||
-data.constr_lhs[le, :] spzeros(LE, GE + LE)
|
||||
]
|
||||
t.M2 = [
|
||||
zeros(ncols)
|
||||
data.constr_lb[ge]
|
||||
-data.constr_ub[le]
|
||||
]
|
||||
t.ncols_orig = ncols
|
||||
t.GE, t.LE = GE, LE
|
||||
t.lhs_ge = data.constr_lhs[ge, :]
|
||||
t.lhs_le = data.constr_lhs[le, :]
|
||||
t.rhs_ge = data.constr_lb[ge]
|
||||
t.rhs_le = data.constr_ub[le]
|
||||
|
||||
data.constr_lhs = [
|
||||
data.constr_lhs[eq, :] spzeros(EQ, GE) spzeros(EQ, LE)
|
||||
data.constr_lhs[ge, :] -I spzeros(GE, LE)
|
||||
data.constr_lhs[le, :] spzeros(LE, GE) I
|
||||
]
|
||||
data.obj = [data.obj; zeros(GE + LE)]
|
||||
data.var_lb = [data.var_lb; zeros(GE + LE)]
|
||||
data.var_ub = [data.var_ub; [Inf for _ = 1:(GE+LE)]]
|
||||
data.var_names = [data.var_names; ["__s$i" for i = 1:(GE+LE)]]
|
||||
data.var_types = [data.var_types; ['C' for _ = 1:(GE+LE)]]
|
||||
data.constr_lb = [
|
||||
data.constr_lb[eq]
|
||||
data.constr_lb[ge]
|
||||
data.constr_ub[le]
|
||||
]
|
||||
data.constr_ub = copy(data.constr_lb)
|
||||
@timeit "Identify constraint type" begin
|
||||
nrows, ncols = size(data.constr_lhs)
|
||||
isequality = abs.(data.constr_ub .- data.constr_lb) .< 1e-6
|
||||
eq = [i for i = 1:nrows if isequality[i]]
|
||||
ge = [i for i = 1:nrows if isfinite(data.constr_lb[i]) && !isequality[i]]
|
||||
le = [i for i = 1:nrows if isfinite(data.constr_ub[i]) && !isequality[i]]
|
||||
EQ, GE, LE = length(eq), length(ge), length(le)
|
||||
end
|
||||
@timeit "Identify slack type" begin
|
||||
constr_lhs_t = sparse(data.constr_lhs')
|
||||
function is_integral(row_idx, rhs)
|
||||
rhs_is_integer = abs(rhs - round(rhs)) <= 1e-6
|
||||
cols, coeffs = findnz(constr_lhs_t[:, row_idx])[1:2]
|
||||
vars_are_integer = all(j -> data.var_types[j] ∈ ['I', 'B'], cols)
|
||||
coeffs_are_integer = all(v -> abs(v - round(v)) <= 1e-6, coeffs)
|
||||
return rhs_is_integer && vars_are_integer && coeffs_are_integer
|
||||
end
|
||||
slack_types = [
|
||||
[is_integral(ge[i], data.constr_lb[ge[i]]) ? 'I' : 'C' for i = 1:GE];
|
||||
[is_integral(le[i], data.constr_ub[le[i]]) ? 'I' : 'C' for i = 1:LE]
|
||||
]
|
||||
end
|
||||
@timeit "Build M1" begin
|
||||
t.M1 = [
|
||||
I spzeros(ncols, GE + LE)
|
||||
data.constr_lhs[ge, :] spzeros(GE, GE + LE)
|
||||
-data.constr_lhs[le, :] spzeros(LE, GE + LE)
|
||||
]
|
||||
end
|
||||
@timeit "Build M2" begin
|
||||
t.M2 = [
|
||||
zeros(ncols)
|
||||
data.constr_lb[ge]
|
||||
-data.constr_ub[le]
|
||||
]
|
||||
end
|
||||
@timeit "Build t.lhs, t.rhs" begin
|
||||
t.ncols_orig = ncols
|
||||
t.GE, t.LE = GE, LE
|
||||
t.lhs_ge = data.constr_lhs[ge, :]
|
||||
t.lhs_le = data.constr_lhs[le, :]
|
||||
t.rhs_ge = data.constr_lb[ge]
|
||||
t.rhs_le = data.constr_ub[le]
|
||||
end
|
||||
@timeit "Build data.constr_lhs" begin
|
||||
data.constr_lhs = [
|
||||
data.constr_lhs[eq, :] spzeros(EQ, GE) spzeros(EQ, LE)
|
||||
data.constr_lhs[ge, :] -I spzeros(GE, LE)
|
||||
data.constr_lhs[le, :] spzeros(LE, GE) I
|
||||
]
|
||||
end
|
||||
@timeit "Build other data fields" begin
|
||||
data.obj = [data.obj; zeros(GE + LE)]
|
||||
data.var_lb = [data.var_lb; zeros(GE + LE)]
|
||||
data.var_ub = [data.var_ub; [Inf for _ = 1:(GE+LE)]]
|
||||
data.var_names = [data.var_names; ["__s$i" for i = 1:(GE+LE)]]
|
||||
data.var_types = [data.var_types; slack_types]
|
||||
data.constr_lb = [
|
||||
data.constr_lb[eq]
|
||||
data.constr_lb[ge]
|
||||
data.constr_ub[le]
|
||||
]
|
||||
data.constr_ub = copy(data.constr_lb)
|
||||
end
|
||||
end
|
||||
|
||||
function backwards!(t::AddSlackVariables, c::ConstraintSet)
|
||||
@@ -155,71 +179,55 @@ end
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
Base.@kwdef mutable struct SplitFreeVars <: Transform
|
||||
F::Int = 0
|
||||
B::Int = 0
|
||||
free::Vector{Int} = []
|
||||
others::Vector{Int} = []
|
||||
ncols::Int = 0
|
||||
is_var_free::Vector{Bool} = []
|
||||
end
|
||||
|
||||
function forward!(t::SplitFreeVars, data::ProblemData)
|
||||
lhs = data.constr_lhs
|
||||
_, ncols = size(lhs)
|
||||
free = [i for i = 1:ncols if !isfinite(data.var_lb[i]) && !isfinite(data.var_ub[i])]
|
||||
others = [i for i = 1:ncols if isfinite(data.var_lb[i]) || isfinite(data.var_ub[i])]
|
||||
t.F = length(free)
|
||||
t.B = length(others)
|
||||
t.free, t.others = free, others
|
||||
is_var_free = [!isfinite(data.var_lb[i]) && !isfinite(data.var_ub[i]) for i = 1:ncols]
|
||||
free_idx = findall(is_var_free)
|
||||
data.obj = [
|
||||
data.obj[others]
|
||||
data.obj[free]
|
||||
-data.obj[free]
|
||||
data.obj
|
||||
[-data.obj[i] for i in free_idx]
|
||||
]
|
||||
data.constr_lhs = [lhs[:, others] lhs[:, free] -lhs[:, free]]
|
||||
data.var_lb = [
|
||||
data.var_lb[others]
|
||||
[0.0 for _ in free]
|
||||
[0.0 for _ in free]
|
||||
[is_var_free[i] ? 0.0 : data.var_lb[i] for i in 1:ncols]
|
||||
[0 for _ in free_idx]
|
||||
]
|
||||
data.var_ub = [
|
||||
data.var_ub[others]
|
||||
[Inf for _ in free]
|
||||
[Inf for _ in free]
|
||||
[is_var_free[i] ? Inf : data.var_ub[i] for i in 1:ncols]
|
||||
[Inf for _ in free_idx]
|
||||
]
|
||||
data.var_types = [
|
||||
data.var_types[others]
|
||||
data.var_types[free]
|
||||
data.var_types[free]
|
||||
data.var_types
|
||||
[data.var_types[i] for i in free_idx]
|
||||
]
|
||||
data.var_names = [
|
||||
data.var_names[others]
|
||||
["$(v)_p" for v in data.var_names[free]]
|
||||
["$(v)_m" for v in data.var_names[free]]
|
||||
data.var_names
|
||||
["$(data.var_names[i])_neg" for i in free_idx]
|
||||
]
|
||||
data.constr_lhs = [lhs -lhs[:, free_idx]]
|
||||
t.is_var_free, t.ncols = is_var_free, ncols
|
||||
end
|
||||
|
||||
function backwards!(t::SplitFreeVars, c::ConstraintSet)
|
||||
# Convert GE constraints into LE
|
||||
nrows, _ = size(c.lhs)
|
||||
ge = [i for i = 1:nrows if isfinite(c.lb[i])]
|
||||
c.ub[ge], c.lb[ge] = -c.lb[ge], -c.ub[ge]
|
||||
c.lhs[ge, :] *= -1
|
||||
ncols, is_var_free = t.ncols, t.is_var_free
|
||||
free_idx = findall(is_var_free)
|
||||
|
||||
# Assert only LE constraints are left (EQ constraints are not supported)
|
||||
@assert all(c.lb .== -Inf)
|
||||
|
||||
# Take minimum (weakest) coefficient
|
||||
B, F = t.B, t.F
|
||||
for i = 1:F
|
||||
c.lhs[:, B+i] = min.(c.lhs[:, B+i], -c.lhs[:, B+F+i])
|
||||
for (offset, var_idx) in enumerate(free_idx)
|
||||
@assert c.lhs[:, var_idx] == -c.lhs[:, ncols+offset]
|
||||
end
|
||||
c.lhs = c.lhs[:, 1:(B+F)]
|
||||
c.lhs = c.lhs[:, 1:ncols]
|
||||
end
|
||||
|
||||
function forward(t::SplitFreeVars, p::Vector{Float64})::Vector{Float64}
|
||||
ncols, is_var_free = t.ncols, t.is_var_free
|
||||
free_idx = findall(is_var_free)
|
||||
return [
|
||||
p[t.others]
|
||||
max.(p[t.free], 0)
|
||||
max.(-p[t.free], 0)
|
||||
[is_var_free[i] ? max(0, p[i]) : p[i] for i in 1:ncols]
|
||||
[max(0, -p[i]) for i in free_idx]
|
||||
]
|
||||
end
|
||||
|
||||
|
||||
@@ -6,11 +6,14 @@ module MIPLearn
|
||||
|
||||
using PyCall
|
||||
using SparseArrays
|
||||
using PrecompileTools: @setup_workload, @compile_workload
|
||||
|
||||
|
||||
include("collectors.jl")
|
||||
include("components.jl")
|
||||
include("extractors.jl")
|
||||
include("io.jl")
|
||||
include("problems/maxcut.jl")
|
||||
include("problems/setcover.jl")
|
||||
include("problems/stab.jl")
|
||||
include("problems/tsp.jl")
|
||||
@@ -22,6 +25,7 @@ function __init__()
|
||||
__init_components__()
|
||||
__init_extractors__()
|
||||
__init_io__()
|
||||
__init_problems_maxcut__()
|
||||
__init_problems_setcover__()
|
||||
__init_problems_stab__()
|
||||
__init_problems_tsp__()
|
||||
@@ -32,4 +36,51 @@ end
|
||||
include("BB/BB.jl")
|
||||
include("Cuts/Cuts.jl")
|
||||
|
||||
# Precompilation
|
||||
# =============================================================================
|
||||
|
||||
# function __precompile_cuts__()
|
||||
# function build_model(mps_filename)
|
||||
# model = read_from_file(mps_filename)
|
||||
# set_optimizer(model, SCIP.Optimizer)
|
||||
# return JumpModel(model)
|
||||
# end
|
||||
# BASEDIR = dirname(@__FILE__)
|
||||
# mps_filename = "$BASEDIR/../test/fixtures/bell5.mps.gz"
|
||||
# h5_filename = "$BASEDIR/../test/fixtures/bell5.h5"
|
||||
# collect_gmi_dual(
|
||||
# mps_filename;
|
||||
# optimizer=HiGHS.Optimizer,
|
||||
# max_rounds = 10,
|
||||
# max_cuts_per_round = 500,
|
||||
# )
|
||||
# knn = KnnDualGmiComponent(
|
||||
# extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"]),
|
||||
# k = 2,
|
||||
# )
|
||||
# knn.fit([h5_filename, h5_filename])
|
||||
# solver = LearningSolver(
|
||||
# components = [
|
||||
# ExpertPrimalComponent(action = SetWarmStart()),
|
||||
# knn,
|
||||
# ],
|
||||
# skip_lp = true,
|
||||
# )
|
||||
# solver.optimize(mps_filename, build_model)
|
||||
# end
|
||||
|
||||
# @setup_workload begin
|
||||
# using SCIP
|
||||
# using HiGHS
|
||||
# using MIPLearn.Cuts
|
||||
# using PrecompileTools: @setup_workload, @compile_workload
|
||||
|
||||
# __init__()
|
||||
# Cuts.__init__()
|
||||
|
||||
# @compile_workload begin
|
||||
# __precompile_cuts__()
|
||||
# end
|
||||
# end
|
||||
|
||||
end # module
|
||||
|
||||
@@ -53,8 +53,14 @@ function __init_components__()
|
||||
)
|
||||
copy!(SelectTopSolutions, pyimport("miplearn.components.primal.mem").SelectTopSolutions)
|
||||
copy!(MergeTopSolutions, pyimport("miplearn.components.primal.mem").MergeTopSolutions)
|
||||
copy!(MemorizingCutsComponent, pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent)
|
||||
copy!(MemorizingLazyComponent, pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent)
|
||||
copy!(
|
||||
MemorizingCutsComponent,
|
||||
pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent,
|
||||
)
|
||||
copy!(
|
||||
MemorizingLazyComponent,
|
||||
pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent,
|
||||
)
|
||||
end
|
||||
|
||||
export MinProbabilityClassifier,
|
||||
|
||||
@@ -39,14 +39,14 @@ end
|
||||
function PyObject(m::SparseMatrixCSC)
|
||||
pyimport("scipy.sparse").csc_matrix(
|
||||
(m.nzval, m.rowval .- 1, m.colptr .- 1),
|
||||
shape=size(m),
|
||||
shape = size(m),
|
||||
).tocoo()
|
||||
end
|
||||
|
||||
function write_jld2(
|
||||
objs::Vector,
|
||||
dirname::AbstractString;
|
||||
prefix::AbstractString=""
|
||||
prefix::AbstractString = "",
|
||||
)::Vector{String}
|
||||
mkpath(dirname)
|
||||
filenames = [@sprintf("%s/%s%05d.jld2", dirname, prefix, i) for i = 1:length(objs)]
|
||||
|
||||
31
src/problems/maxcut.jl
Normal file
31
src/problems/maxcut.jl
Normal file
@@ -0,0 +1,31 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using JuMP
|
||||
|
||||
global MaxCutData = PyNULL()
|
||||
global MaxCutGenerator = PyNULL()
|
||||
|
||||
function __init_problems_maxcut__()
|
||||
copy!(MaxCutData, pyimport("miplearn.problems.maxcut").MaxCutData)
|
||||
copy!(MaxCutGenerator, pyimport("miplearn.problems.maxcut").MaxCutGenerator)
|
||||
end
|
||||
|
||||
function build_maxcut_model_jump(data::Any; optimizer)
|
||||
if data isa String
|
||||
data = read_pkl_gz(data)
|
||||
end
|
||||
nodes = collect(data.graph.nodes())
|
||||
edges = collect(data.graph.edges())
|
||||
model = Model(optimizer)
|
||||
@variable(model, x[nodes], Bin)
|
||||
@objective(
|
||||
model,
|
||||
Min,
|
||||
sum(-data.weights[i] * x[e[1]] * (1 - x[e[2]]) for (i, e) in enumerate(edges))
|
||||
)
|
||||
return JumpModel(model)
|
||||
end
|
||||
|
||||
export MaxCutData, MaxCutGenerator, build_maxcut_model_jump
|
||||
@@ -13,7 +13,7 @@ function __init_problems_setcover__()
|
||||
copy!(SetCoverGenerator, pyimport("miplearn.problems.setcover").SetCoverGenerator)
|
||||
end
|
||||
|
||||
function build_setcover_model_jump(data::Any; optimizer=HiGHS.Optimizer)
|
||||
function build_setcover_model_jump(data::Any; optimizer = HiGHS.Optimizer)
|
||||
if data isa String
|
||||
data = read_pkl_gz(data)
|
||||
end
|
||||
|
||||
@@ -10,10 +10,13 @@ global MaxWeightStableSetGenerator = PyNULL()
|
||||
|
||||
function __init_problems_stab__()
|
||||
copy!(MaxWeightStableSetData, pyimport("miplearn.problems.stab").MaxWeightStableSetData)
|
||||
copy!(MaxWeightStableSetGenerator, pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator)
|
||||
copy!(
|
||||
MaxWeightStableSetGenerator,
|
||||
pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator,
|
||||
)
|
||||
end
|
||||
|
||||
function build_stab_model_jump(data::Any; optimizer=HiGHS.Optimizer)
|
||||
function build_stab_model_jump(data::Any; optimizer = HiGHS.Optimizer)
|
||||
nx = pyimport("networkx")
|
||||
|
||||
if data isa String
|
||||
@@ -50,11 +53,7 @@ function build_stab_model_jump(data::Any; optimizer=HiGHS.Optimizer)
|
||||
end
|
||||
end
|
||||
|
||||
return JumpModel(
|
||||
model,
|
||||
cuts_separate=cuts_separate,
|
||||
cuts_enforce=cuts_enforce,
|
||||
)
|
||||
return JumpModel(model, cuts_separate = cuts_separate, cuts_enforce = cuts_enforce)
|
||||
end
|
||||
|
||||
export MaxWeightStableSetData, MaxWeightStableSetGenerator, build_stab_model_jump
|
||||
|
||||
@@ -9,7 +9,10 @@ global TravelingSalesmanGenerator = PyNULL()
|
||||
|
||||
function __init_problems_tsp__()
|
||||
copy!(TravelingSalesmanData, pyimport("miplearn.problems.tsp").TravelingSalesmanData)
|
||||
copy!(TravelingSalesmanGenerator, pyimport("miplearn.problems.tsp").TravelingSalesmanGenerator)
|
||||
copy!(
|
||||
TravelingSalesmanGenerator,
|
||||
pyimport("miplearn.problems.tsp").TravelingSalesmanGenerator,
|
||||
)
|
||||
end
|
||||
|
||||
function build_tsp_model_jump(data::Any; optimizer)
|
||||
@@ -19,17 +22,15 @@ function build_tsp_model_jump(data::Any; optimizer)
|
||||
data = read_pkl_gz(data)
|
||||
end
|
||||
model = Model(optimizer)
|
||||
edges = [(i, j) for i in 1:data.n_cities for j in (i+1):data.n_cities]
|
||||
edges = [(i, j) for i = 1:data.n_cities for j = (i+1):data.n_cities]
|
||||
x = @variable(model, x[edges], Bin)
|
||||
@objective(model, Min, sum(
|
||||
x[(i, j)] * data.distances[i, j] for (i, j) in edges
|
||||
))
|
||||
@objective(model, Min, sum(x[(i, j)] * data.distances[i, j] for (i, j) in edges))
|
||||
|
||||
# Eq: Must choose two edges adjacent to each node
|
||||
@constraint(
|
||||
model,
|
||||
eq_degree[i in 1:data.n_cities],
|
||||
sum(x[(min(i, j), max(i, j))] for j in 1:data.n_cities if i != j) == 2
|
||||
sum(x[(min(i, j), max(i, j))] for j = 1:data.n_cities if i != j) == 2
|
||||
)
|
||||
|
||||
function lazy_separate(cb_data)
|
||||
@@ -41,10 +42,8 @@ function build_tsp_model_jump(data::Any; optimizer)
|
||||
for component in nx.connected_components(graph)
|
||||
if length(component) < data.n_cities
|
||||
cut_edges = [
|
||||
[e[1], e[2]]
|
||||
for e in edges
|
||||
if (e[1] ∈ component && e[2] ∉ component)
|
||||
||
|
||||
[e[1], e[2]] for
|
||||
e in edges if (e[1] ∈ component && e[2] ∉ component) ||
|
||||
(e[1] ∉ component && e[2] ∈ component)
|
||||
]
|
||||
push!(violations, cut_edges)
|
||||
@@ -63,9 +62,9 @@ function build_tsp_model_jump(data::Any; optimizer)
|
||||
|
||||
return JumpModel(
|
||||
model,
|
||||
lazy_enforce=lazy_enforce,
|
||||
lazy_separate=lazy_separate,
|
||||
lp_optimizer=optimizer,
|
||||
lazy_enforce = lazy_enforce,
|
||||
lazy_separate = lazy_separate,
|
||||
lp_optimizer = optimizer,
|
||||
)
|
||||
end
|
||||
|
||||
|
||||
@@ -18,7 +18,7 @@ Base.@kwdef mutable struct _JumpModelExtData
|
||||
cuts_separate::Union{Function,Nothing} = nothing
|
||||
lazy_enforce::Union{Function,Nothing} = nothing
|
||||
lazy_separate::Union{Function,Nothing} = nothing
|
||||
lp_optimizer
|
||||
lp_optimizer::Any
|
||||
end
|
||||
|
||||
function JuMP.copy_extension_data(
|
||||
@@ -26,9 +26,7 @@ function JuMP.copy_extension_data(
|
||||
new_model::AbstractModel,
|
||||
::AbstractModel,
|
||||
)
|
||||
new_model.ext[:miplearn] = _JumpModelExtData(
|
||||
lp_optimizer=old_ext.lp_optimizer
|
||||
)
|
||||
new_model.ext[:miplearn] = _JumpModelExtData(lp_optimizer = old_ext.lp_optimizer)
|
||||
end
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
@@ -91,14 +89,27 @@ function _extract_after_load_vars(model::JuMP.Model, h5)
|
||||
for v in vars
|
||||
]
|
||||
types = [JuMP.is_binary(v) ? "B" : JuMP.is_integer(v) ? "I" : "C" for v in vars]
|
||||
obj = objective_function(model, AffExpr)
|
||||
obj_coeffs = [v ∈ keys(obj.terms) ? obj.terms[v] : 0.0 for v in vars]
|
||||
|
||||
# Linear obj terms
|
||||
obj = objective_function(model, QuadExpr)
|
||||
obj_coeffs_linear = [v ∈ keys(obj.aff.terms) ? obj.aff.terms[v] : 0.0 for v in vars]
|
||||
|
||||
# Quadratic obj terms
|
||||
if length(obj.terms) > 0
|
||||
nvars = length(vars)
|
||||
obj_coeffs_quad = zeros(nvars, nvars)
|
||||
for (pair, coeff) in obj.terms
|
||||
obj_coeffs_quad[pair.a.index.value, pair.b.index.value] = coeff
|
||||
end
|
||||
h5.put_array("static_var_obj_coeffs_quad", obj_coeffs_quad)
|
||||
end
|
||||
|
||||
h5.put_array("static_var_names", to_str_array(JuMP.name.(vars)))
|
||||
h5.put_array("static_var_types", to_str_array(types))
|
||||
h5.put_array("static_var_lower_bounds", lb)
|
||||
h5.put_array("static_var_upper_bounds", ub)
|
||||
h5.put_array("static_var_obj_coeffs", obj_coeffs)
|
||||
h5.put_scalar("static_obj_offset", obj.constant)
|
||||
h5.put_array("static_var_obj_coeffs", obj_coeffs_linear)
|
||||
h5.put_scalar("static_obj_offset", obj.aff.constant)
|
||||
end
|
||||
|
||||
function _extract_after_load_constrs(model::JuMP.Model, h5)
|
||||
@@ -145,7 +156,7 @@ function _extract_after_load_constrs(model::JuMP.Model, h5)
|
||||
end
|
||||
end
|
||||
if isempty(names)
|
||||
error("no model constraints found; note that MIPLearn ignores unnamed constraints")
|
||||
return
|
||||
end
|
||||
lhs = sparse(lhs_rows, lhs_cols, lhs_values, length(rhs), JuMP.num_variables(model))
|
||||
h5.put_sparse("static_constr_lhs", lhs)
|
||||
@@ -284,9 +295,11 @@ function _extract_after_mip(model::JuMP.Model, h5)
|
||||
|
||||
# Slacks
|
||||
lhs = h5.get_sparse("static_constr_lhs")
|
||||
rhs = h5.get_array("static_constr_rhs")
|
||||
slacks = abs.(lhs * x - rhs)
|
||||
h5.put_array("mip_constr_slacks", slacks)
|
||||
if lhs !== nothing
|
||||
rhs = h5.get_array("static_constr_rhs")
|
||||
slacks = abs.(lhs * x - rhs)
|
||||
h5.put_array("mip_constr_slacks", slacks)
|
||||
end
|
||||
|
||||
# Cuts and lazy constraints
|
||||
ext = model.ext[:miplearn]
|
||||
@@ -297,7 +310,7 @@ end
|
||||
function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
|
||||
vars = [variable_by_name(model, v) for v in var_names]
|
||||
for (i, var) in enumerate(vars)
|
||||
fix(var, var_values[i], force=true)
|
||||
fix(var, var_values[i], force = true)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -392,19 +405,19 @@ function __init_solvers_jump__()
|
||||
function __init__(
|
||||
self,
|
||||
inner;
|
||||
cuts_enforce::Union{Function,Nothing}=nothing,
|
||||
cuts_separate::Union{Function,Nothing}=nothing,
|
||||
lazy_enforce::Union{Function,Nothing}=nothing,
|
||||
lazy_separate::Union{Function,Nothing}=nothing,
|
||||
lp_optimizer=HiGHS.Optimizer,
|
||||
cuts_enforce::Union{Function,Nothing} = nothing,
|
||||
cuts_separate::Union{Function,Nothing} = nothing,
|
||||
lazy_enforce::Union{Function,Nothing} = nothing,
|
||||
lazy_separate::Union{Function,Nothing} = nothing,
|
||||
lp_optimizer = HiGHS.Optimizer,
|
||||
)
|
||||
self.inner = inner
|
||||
self.inner.ext[:miplearn] = _JumpModelExtData(
|
||||
cuts_enforce=cuts_enforce,
|
||||
cuts_separate=cuts_separate,
|
||||
lazy_enforce=lazy_enforce,
|
||||
lazy_separate=lazy_separate,
|
||||
lp_optimizer=lp_optimizer,
|
||||
cuts_enforce = cuts_enforce,
|
||||
cuts_separate = cuts_separate,
|
||||
lazy_enforce = lazy_enforce,
|
||||
lazy_separate = lazy_separate,
|
||||
lp_optimizer = lp_optimizer,
|
||||
)
|
||||
end
|
||||
|
||||
@@ -414,7 +427,7 @@ function __init_solvers_jump__()
|
||||
constrs_lhs,
|
||||
constrs_sense,
|
||||
constrs_rhs,
|
||||
stats=nothing,
|
||||
stats = nothing,
|
||||
) = _add_constrs(
|
||||
self.inner,
|
||||
from_str_array(var_names),
|
||||
@@ -430,14 +443,14 @@ function __init_solvers_jump__()
|
||||
|
||||
extract_after_mip(self, h5) = _extract_after_mip(self.inner, h5)
|
||||
|
||||
fix_variables(self, var_names, var_values, stats=nothing) =
|
||||
fix_variables(self, var_names, var_values, stats = nothing) =
|
||||
_fix_variables(self.inner, from_str_array(var_names), var_values, stats)
|
||||
|
||||
optimize(self) = _optimize(self.inner)
|
||||
|
||||
relax(self) = Class(_relax(self.inner))
|
||||
|
||||
set_warm_starts(self, var_names, var_values, stats=nothing) =
|
||||
set_warm_starts(self, var_names, var_values, stats = nothing) =
|
||||
_set_warm_starts(self.inner, from_str_array(var_names), var_values, stats)
|
||||
|
||||
write(self, filename) = _write(self.inner, filename)
|
||||
|
||||
@@ -17,6 +17,7 @@ MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68"
|
||||
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
|
||||
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
|
||||
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
|
||||
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
||||
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
|
||||
[compat]
|
||||
|
||||
BIN
test/fixtures/bell5.h5
vendored
BIN
test/fixtures/bell5.h5
vendored
Binary file not shown.
BIN
test/fixtures/vpm2.h5
vendored
BIN
test/fixtures/vpm2.h5
vendored
Binary file not shown.
@@ -86,11 +86,7 @@ function bb_run(optimizer_name, optimizer; large = true)
|
||||
BB.ReliabilityBranching(aggregation = :min, collect = true),
|
||||
]
|
||||
h5 = H5File("$FIXTURES/$instance.h5")
|
||||
mip_lower_bound = h5.get_scalar("mip_lower_bound")
|
||||
mip_upper_bound = h5.get_scalar("mip_upper_bound")
|
||||
mip_sense = h5.get_scalar("mip_sense")
|
||||
mip_primal_bound =
|
||||
mip_sense == "min" ? mip_upper_bound : mip_lower_bound
|
||||
mip_obj_bound = h5.get_scalar("mip_obj_bound")
|
||||
h5.file.close()
|
||||
|
||||
mip = BB.init(optimizer)
|
||||
@@ -98,7 +94,7 @@ function bb_run(optimizer_name, optimizer; large = true)
|
||||
@info optimizer_name, branch_rule, instance
|
||||
@time BB.solve!(
|
||||
mip,
|
||||
initial_primal_bound = mip_primal_bound,
|
||||
initial_primal_bound = mip_obj_bound,
|
||||
print_interval = 1,
|
||||
node_limit = 25,
|
||||
branch_rule = branch_rule,
|
||||
|
||||
23
test/src/Cuts/tableau/test_gmi.jl
Normal file
23
test/src/Cuts/tableau/test_gmi.jl
Normal file
@@ -0,0 +1,23 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using HiGHS
|
||||
|
||||
function test_cuts_tableau_gmi()
|
||||
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
|
||||
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
|
||||
collect_gmi(mps_filename, optimizer = HiGHS.Optimizer)
|
||||
h5 = H5File(h5_filename, "r")
|
||||
try
|
||||
cuts_lb = h5.get_array("cuts_lb")
|
||||
cuts_ub = h5.get_array("cuts_ub")
|
||||
cuts_lhs = h5.get_sparse("cuts_lhs")
|
||||
n_cuts = length(cuts_lb)
|
||||
@test n_cuts > 0
|
||||
@test n_cuts == length(cuts_ub)
|
||||
@test cuts_lhs.shape[1] == n_cuts
|
||||
finally
|
||||
h5.close()
|
||||
end
|
||||
end
|
||||
70
test/src/Cuts/tableau/test_gmi_dual.jl
Normal file
70
test/src/Cuts/tableau/test_gmi_dual.jl
Normal file
@@ -0,0 +1,70 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using SCIP
|
||||
using HiGHS
|
||||
using MIPLearn.Cuts
|
||||
|
||||
function test_cuts_tableau_gmi_dual_collect()
|
||||
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
|
||||
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
|
||||
stats = collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
|
||||
h5 = H5File(h5_filename, "r")
|
||||
try
|
||||
cuts_basis_vars = h5.get_array("cuts_basis_vars")
|
||||
cuts_basis_sizes = h5.get_array("cuts_basis_sizes")
|
||||
cuts_rows = h5.get_array("cuts_rows")
|
||||
@test size(cuts_basis_vars) == (15, 402)
|
||||
@test size(cuts_basis_sizes) == (15, 4)
|
||||
@test size(cuts_rows) == (15,)
|
||||
finally
|
||||
h5.close()
|
||||
end
|
||||
end
|
||||
|
||||
function test_cuts_tableau_gmi_dual_usage()
|
||||
function build_model(mps_filename)
|
||||
model = read_from_file(mps_filename)
|
||||
set_optimizer(model, SCIP.Optimizer)
|
||||
return JumpModel(model)
|
||||
end
|
||||
|
||||
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
|
||||
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
|
||||
rm(h5_filename, force=true)
|
||||
|
||||
# Run basic collector
|
||||
bc = BasicCollector(write_mps = false, skip_lp = true)
|
||||
bc.collect([mps_filename], build_model)
|
||||
|
||||
# Run dual GMI collector
|
||||
@info "Running dual GMI collector..."
|
||||
collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
|
||||
|
||||
# # Test expert component
|
||||
# solver = LearningSolver(
|
||||
# components = [
|
||||
# ExpertPrimalComponent(action = SetWarmStart()),
|
||||
# ExpertDualGmiComponent(),
|
||||
# ],
|
||||
# skip_lp = true,
|
||||
# )
|
||||
# solver.optimize(mps_filename, build_model)
|
||||
|
||||
# Test kNN component
|
||||
knn = KnnDualGmiComponent(
|
||||
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"]),
|
||||
k = 2,
|
||||
)
|
||||
knn.fit([h5_filename, h5_filename])
|
||||
solver = LearningSolver(
|
||||
components = [
|
||||
ExpertPrimalComponent(action = SetWarmStart()),
|
||||
knn,
|
||||
],
|
||||
skip_lp = true,
|
||||
)
|
||||
solver.optimize(mps_filename, build_model)
|
||||
return
|
||||
end
|
||||
@@ -19,9 +19,12 @@ include("BB/test_bb.jl")
|
||||
include("components/test_cuts.jl")
|
||||
include("components/test_lazy.jl")
|
||||
include("Cuts/BlackBox/test_cplex.jl")
|
||||
include("Cuts/tableau/test_gmi.jl")
|
||||
include("Cuts/tableau/test_gmi_dual.jl")
|
||||
include("problems/test_setcover.jl")
|
||||
include("problems/test_stab.jl")
|
||||
include("problems/test_tsp.jl")
|
||||
include("problems/test_maxcut.jl")
|
||||
include("solvers/test_jump.jl")
|
||||
include("test_io.jl")
|
||||
include("test_usage.jl")
|
||||
@@ -35,6 +38,7 @@ function runtests()
|
||||
test_problems_setcover()
|
||||
test_problems_stab()
|
||||
test_problems_tsp()
|
||||
test_problems_maxcut()
|
||||
test_solvers_jump()
|
||||
test_usage()
|
||||
test_cuts()
|
||||
@@ -43,8 +47,8 @@ function runtests()
|
||||
end
|
||||
|
||||
function format()
|
||||
JuliaFormatter.format(BASEDIR, verbose=true)
|
||||
JuliaFormatter.format("$BASEDIR/../../src", verbose=true)
|
||||
JuliaFormatter.format(BASEDIR, verbose = true)
|
||||
JuliaFormatter.format("$BASEDIR/../../src", verbose = true)
|
||||
return
|
||||
end
|
||||
|
||||
|
||||
@@ -10,34 +10,32 @@ function gen_stab()
|
||||
randint = pyimport("scipy.stats").randint
|
||||
np.random.seed(42)
|
||||
gen = MaxWeightStableSetGenerator(
|
||||
w=uniform(10.0, scale=1.0),
|
||||
n=randint(low=50, high=51),
|
||||
p=uniform(loc=0.5, scale=0.0),
|
||||
fix_graph=true,
|
||||
w = uniform(10.0, scale = 1.0),
|
||||
n = randint(low = 50, high = 51),
|
||||
p = uniform(loc = 0.5, scale = 0.0),
|
||||
fix_graph = true,
|
||||
)
|
||||
data = gen.generate(1)
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="stab-n50-")
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "stab-n50-")
|
||||
collector = BasicCollector()
|
||||
collector.collect(
|
||||
data_filenames,
|
||||
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
|
||||
progress=true,
|
||||
verbose=true,
|
||||
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
|
||||
progress = true,
|
||||
verbose = true,
|
||||
)
|
||||
end
|
||||
|
||||
function test_cuts()
|
||||
data_filenames = ["$BASEDIR/../fixtures/stab-n50-00000.pkl.gz"]
|
||||
clf = pyimport("sklearn.dummy").DummyClassifier()
|
||||
extractor = H5FieldsExtractor(
|
||||
instance_fields=["static_var_obj_coeffs"],
|
||||
)
|
||||
comp = MemorizingCutsComponent(clf=clf, extractor=extractor)
|
||||
solver = LearningSolver(components=[comp])
|
||||
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
|
||||
comp = MemorizingCutsComponent(clf = clf, extractor = extractor)
|
||||
solver = LearningSolver(components = [comp])
|
||||
solver.fit(data_filenames)
|
||||
stats = solver.optimize(
|
||||
model, stats = solver.optimize(
|
||||
data_filenames[1],
|
||||
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
|
||||
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
|
||||
)
|
||||
@test stats["Cuts: AOT"] > 0
|
||||
end
|
||||
|
||||
@@ -11,36 +11,34 @@ function gen_tsp()
|
||||
np.random.seed(42)
|
||||
|
||||
gen = TravelingSalesmanGenerator(
|
||||
x=uniform(loc=0.0, scale=1000.0),
|
||||
y=uniform(loc=0.0, scale=1000.0),
|
||||
n=randint(low=20, high=21),
|
||||
gamma=uniform(loc=1.0, scale=0.25),
|
||||
fix_cities=true,
|
||||
round=true,
|
||||
x = uniform(loc = 0.0, scale = 1000.0),
|
||||
y = uniform(loc = 0.0, scale = 1000.0),
|
||||
n = randint(low = 20, high = 21),
|
||||
gamma = uniform(loc = 1.0, scale = 0.25),
|
||||
fix_cities = true,
|
||||
round = true,
|
||||
)
|
||||
data = gen.generate(1)
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="tsp-n20-")
|
||||
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "tsp-n20-")
|
||||
collector = BasicCollector()
|
||||
collector.collect(
|
||||
data_filenames,
|
||||
data -> build_tsp_model_jump(data, optimizer=GLPK.Optimizer),
|
||||
progress=true,
|
||||
verbose=true,
|
||||
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
|
||||
progress = true,
|
||||
verbose = true,
|
||||
)
|
||||
end
|
||||
|
||||
function test_lazy()
|
||||
data_filenames = ["$BASEDIR/../fixtures/tsp-n20-00000.pkl.gz"]
|
||||
clf = pyimport("sklearn.dummy").DummyClassifier()
|
||||
extractor = H5FieldsExtractor(
|
||||
instance_fields=["static_var_obj_coeffs"],
|
||||
)
|
||||
comp = MemorizingLazyComponent(clf=clf, extractor=extractor)
|
||||
solver = LearningSolver(components=[comp])
|
||||
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
|
||||
comp = MemorizingLazyComponent(clf = clf, extractor = extractor)
|
||||
solver = LearningSolver(components = [comp])
|
||||
solver.fit(data_filenames)
|
||||
stats = solver.optimize(
|
||||
model, stats = solver.optimize(
|
||||
data_filenames[1],
|
||||
data -> build_tsp_model_jump(data, optimizer=GLPK.Optimizer),
|
||||
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
|
||||
)
|
||||
@test stats["Lazy Constraints: AOT"] > 0
|
||||
end
|
||||
|
||||
54
test/src/problems/test_maxcut.jl
Normal file
54
test/src/problems/test_maxcut.jl
Normal file
@@ -0,0 +1,54 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using PyCall
|
||||
|
||||
function test_problems_maxcut()
|
||||
np = pyimport("numpy")
|
||||
random = pyimport("random")
|
||||
scipy_stats = pyimport("scipy.stats")
|
||||
randint = scipy_stats.randint
|
||||
uniform = scipy_stats.uniform
|
||||
|
||||
# Set random seed
|
||||
random.seed(42)
|
||||
np.random.seed(42)
|
||||
|
||||
# Build random instance
|
||||
data = MaxCutGenerator(
|
||||
n = randint(low = 10, high = 11),
|
||||
p = uniform(loc = 0.5, scale = 0.0),
|
||||
fix_graph = false,
|
||||
).generate(
|
||||
1,
|
||||
)[1]
|
||||
|
||||
# Build model
|
||||
model = build_maxcut_model_jump(data, optimizer = SCIP.Optimizer)
|
||||
|
||||
# Check static features
|
||||
h5 = H5File(tempname(), "w")
|
||||
model.extract_after_load(h5)
|
||||
obj_linear = h5.get_array("static_var_obj_coeffs")
|
||||
obj_quad = h5.get_array("static_var_obj_coeffs_quad")
|
||||
@test obj_linear == [3.0, 1.0, 3.0, 1.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0]
|
||||
@test obj_quad == [
|
||||
0.0 0.0 -1.0 1.0 -1.0 0.0 0.0 0.0 -1.0 -1.0
|
||||
0.0 0.0 1.0 -1.0 0.0 -1.0 -1.0 0.0 0.0 1.0
|
||||
0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0
|
||||
0.0 0.0 0.0 0.0 0.0 -1.0 1.0 -1.0 0.0 0.0
|
||||
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
|
||||
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||||
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
|
||||
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.0
|
||||
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
|
||||
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||||
]
|
||||
|
||||
# Check optimal solution
|
||||
model.optimize()
|
||||
model.extract_after_mip(h5)
|
||||
@test h5.get_scalar("mip_obj_value") == -4
|
||||
h5.close()
|
||||
end
|
||||
@@ -8,11 +8,11 @@ using SCIP
|
||||
function test_problems_stab()
|
||||
nx = pyimport("networkx")
|
||||
data = MaxWeightStableSetData(
|
||||
graph=nx.gnp_random_graph(25, 0.5, seed=42),
|
||||
weights=repeat([1.0], 25),
|
||||
graph = nx.gnp_random_graph(25, 0.5, seed = 42),
|
||||
weights = repeat([1.0], 25),
|
||||
)
|
||||
h5 = H5File(tempname(), "w")
|
||||
model = build_stab_model_jump(data, optimizer=SCIP.Optimizer)
|
||||
model = build_stab_model_jump(data, optimizer = SCIP.Optimizer)
|
||||
model.extract_after_load(h5)
|
||||
model.optimize()
|
||||
model.extract_after_mip(h5)
|
||||
|
||||
@@ -10,17 +10,12 @@ function test_problems_tsp()
|
||||
squareform = pyimport("scipy.spatial.distance").squareform
|
||||
|
||||
data = TravelingSalesmanData(
|
||||
n_cities=6,
|
||||
distances=squareform(pdist([
|
||||
[0.0, 0.0],
|
||||
[1.0, 0.0],
|
||||
[2.0, 0.0],
|
||||
[3.0, 0.0],
|
||||
[0.0, 1.0],
|
||||
[3.0, 1.0],
|
||||
])),
|
||||
n_cities = 6,
|
||||
distances = squareform(
|
||||
pdist([[0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [3.0, 0.0], [0.0, 1.0], [3.0, 1.0]]),
|
||||
),
|
||||
)
|
||||
model = build_tsp_model_jump(data, optimizer=GLPK.Optimizer)
|
||||
model = build_tsp_model_jump(data, optimizer = GLPK.Optimizer)
|
||||
model.optimize()
|
||||
@test objective_value(model.inner) == 8.0
|
||||
return
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
|
||||
using MIPLearn
|
||||
using JLD2
|
||||
using SparseArrays
|
||||
|
||||
struct _TestStruct
|
||||
n::Int
|
||||
@@ -35,6 +36,8 @@ function test_h5()
|
||||
_test_roundtrip_array(h5, [1, 2, 3])
|
||||
_test_roundtrip_array(h5, [1.0, 2.0, 3.0])
|
||||
_test_roundtrip_str_array(h5, ["A", "BB", "CCC"])
|
||||
_test_roundtrip_sparse(h5, sparse([1; 2; 3], [1; 2; 3], [1; 2; 3]))
|
||||
# _test_roundtrip_sparse(h5, sparse([1; 2; 3], [1; 2; 3], [1; 2; 3], 4, 4))
|
||||
@test h5.get_array("unknown-key") === nothing
|
||||
h5.close()
|
||||
end
|
||||
@@ -46,7 +49,7 @@ function test_jld2()
|
||||
_TestStruct(2, [1.0, 2.0, 3.0]),
|
||||
_TestStruct(3, [3.0, 3.0, 3.0]),
|
||||
]
|
||||
filenames = write_jld2(data, dirname, prefix="obj")
|
||||
filenames = write_jld2(data, dirname, prefix = "obj")
|
||||
@test all(
|
||||
filenames .==
|
||||
["$dirname/obj00001.jld2", "$dirname/obj00002.jld2", "$dirname/obj00003.jld2"],
|
||||
@@ -79,3 +82,11 @@ function _test_roundtrip_str_array(h5, original)
|
||||
@test recovered !== nothing
|
||||
@test all(original .== recovered)
|
||||
end
|
||||
|
||||
function _test_roundtrip_sparse(h5, original)
|
||||
h5.put_sparse("key", original)
|
||||
recovered = MIPLearn.convert(SparseMatrixCSC, h5.get_sparse("key"))
|
||||
@test recovered !== nothing
|
||||
@test size(original) == size(recovered)
|
||||
@test all(original .== recovered)
|
||||
end
|
||||
|
||||
@@ -13,16 +13,16 @@ function test_usage()
|
||||
|
||||
@debug "Setting up LearningSolver..."
|
||||
solver = LearningSolver(
|
||||
components=[
|
||||
components = [
|
||||
IndependentVarsPrimalComponent(
|
||||
base_clf=SingleClassFix(
|
||||
base_clf = SingleClassFix(
|
||||
MinProbabilityClassifier(
|
||||
base_clf=LogisticRegression(),
|
||||
thresholds=[0.95, 0.95],
|
||||
base_clf = LogisticRegression(),
|
||||
thresholds = [0.95, 0.95],
|
||||
),
|
||||
),
|
||||
extractor=AlvLouWeh2017Extractor(),
|
||||
action=SetWarmStart(),
|
||||
extractor = AlvLouWeh2017Extractor(),
|
||||
action = SetWarmStart(),
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user