64 Commits

Author SHA1 Message Date
aa11db99a2 FisSal2011: Adjust constants 2025-10-06 12:52:58 -05:00
a4ff65275e SplitFreeVars: Preserve var order 2025-10-06 12:51:27 -05:00
295e29c351 DualGMI: multiple fixes 2025-10-02 10:10:42 -05:00
67e706d727 FisSal2011: Write H5 2025-08-13 15:33:48 -05:00
407312e129 FisSal2011: Keep only active cuts at the end 2025-08-13 14:44:41 -05:00
e2e69415c1 FisSal2011: Implement faster get/set basis for Gurobi 2025-08-08 22:44:43 -05:00
9713873a34 FisSal2011: Large LP: Add cuts in small batches 2025-08-08 22:08:50 -05:00
e2906a0a7e FisSal2011: Accelerate creation of obj function 2025-08-08 21:49:41 -05:00
3ca5a4fec7 FisSal2011: Small fix 2025-08-08 21:32:11 -05:00
84acd6b72c collect_gmi_FisSal2011: Accelerate appending unique cuts 2025-08-08 21:11:05 -05:00
8f3eb8adc4 FisSal2011: Implement miplearn variant; minor fixes 2025-08-08 20:25:51 -05:00
65a6024c36 assert_cuts_off: Improve performance 2025-08-08 15:46:24 -05:00
bb59362571 compute_tableau: Compute directly in compressed row format 2025-08-08 15:30:01 -05:00
5e2b0c2958 FisSal2011: Improve estimated tableau density 2025-08-08 15:06:15 -05:00
37f3abee42 FisSal2011: Speed up hash calculation 2025-08-08 14:50:07 -05:00
1296182744 compute_tableau: Improve efficiency 2025-08-08 13:49:26 -05:00
4158fccf12 compute_tableau: Reduce memory requirements 2025-08-07 22:09:15 -05:00
97c5813e59 FisSal2011: Change some default args; remove basis_seen 2025-08-07 21:47:30 -05:00
55b0a2bbca AddSlackVariables: Improve performance 2025-08-07 21:42:24 -05:00
b8d836de10 FisSal2011: Implement early termination; improve log 2025-08-04 23:29:59 -05:00
1c44cb4e86 Fix incorrect integer slacks 2025-08-04 23:29:00 -05:00
8edd031bbe FisSal2011: Add multiple variants 2025-08-04 21:00:36 -05:00
0a0d133161 FisSal2011: clean up, improve gap closure on MIPLIB 3 (65.5%) 2025-08-04 16:15:38 -05:00
0b5ec4740e FisSal2011: partial implementation 2025-08-04 15:17:17 -05:00
05e7d1619c Make dual GMI cuts stronger 2025-08-01 09:43:09 -05:00
d351d84d58 DualGMI: Skip empty H5 files 2025-07-28 12:54:42 -05:00
1aaf4ebdc4 DualGmi: Revert early stop for invalid cuts 2025-07-22 13:43:35 -05:00
5662e5c2e6 DualGMI: Add time limit 2025-07-22 12:06:37 -05:00
63bbd750fb DualGMI: compression: Skip empty files 2025-07-17 17:07:20 -05:00
6c903d0b19 DualGMI: Fix type errors 2025-07-17 13:02:45 -05:00
c3a8fa6a08 DualGMI: Use compressed basis representation 2025-07-17 12:22:11 -05:00
5c522dbc5f DualGMI: Reimplement Expert using kNN component 2025-07-17 11:04:41 -05:00
a9f1b2c394 JumpSolver: skip obj_coeffs_quad unless problem has quad terms 2025-07-17 10:45:58 -05:00
2ea0043c03 Add support for MIQPs; implement max cut model 2025-06-11 15:38:22 -05:00
9ac2f74856 BB/log: Increase node & parent columnd width 2025-04-18 16:05:01 -05:00
672bb220c1 Disable precompilation 2024-12-10 15:12:00 -06:00
20a7cfb42d BB: Make compatible with MOI 1.32+ 2024-12-10 15:09:00 -06:00
b6ba75c3dc Add compat section: PrecompileTools, SCIP 2024-12-10 12:20:25 -06:00
a5a3690bb6 Bump to MIPLearn 0.4.2 2024-12-10 11:47:26 -06:00
e5a2550c21 Bump to MIPLearn 0.4.1 2024-12-10 11:10:29 -06:00
011a106d20 gmi_dual: Small fixes 2024-10-17 09:37:47 -05:00
006ace00e7 Accelerate KnnDualGmiComponent_before_mip; enable precompilation 2024-08-23 10:08:07 -05:00
46ed6859f2 accelerate build_constraints 2024-08-23 05:32:35 -05:00
15dfcac32e gmi_dual: Implement alternative strategies, report time and cuts 2024-08-20 17:02:45 -05:00
c5fe6bf712 Detect and skip duplicate cuts 2024-08-08 08:58:29 -05:00
24d93c8894 gmi_dual: Implement alternative cut callback strategy 2024-08-07 12:16:20 -05:00
ffea599af3 cuts: Speed up tableau computation 2024-06-14 15:35:12 -05:00
2f16f04878 gmi_dual: Accelerate build_expr 2024-06-14 13:56:56 -05:00
70d2ee5883 dual_gmi: Relax tolerances 2024-06-13 15:15:49 -05:00
92fd3c3e32 dual_gmi: Fix gap formula 2024-06-13 14:58:14 -05:00
77c7e94927 gmi_dual: stop early; fix gap improvement with zero cuts issue 2024-06-13 14:48:54 -05:00
24532614e5 gmi_dual: Return time 2024-06-10 12:28:40 -05:00
fd655b2291 collect_gmi_dual: Filter out useless cuts 2024-06-07 12:07:26 -05:00
6609254105 gmi: Fix obj_offset; add more profiling 2024-06-07 11:58:41 -05:00
5728098614 Minor changes 2024-06-07 11:40:22 -05:00
627952a083 collect_gmi_dual: Remove useless set_obj 2024-06-07 11:14:45 -05:00
1bd4917cca collect_gmi_dual: Remove v2 data struct 2024-06-07 11:13:59 -05:00
f89903cf68 collect_gmi_dual: profile, do not filter at the end 2024-06-07 10:56:58 -05:00
beab75a16d Implement expert and knn dual gmi component 2024-06-06 10:59:36 -05:00
00fe4d07d2 Add gmi_dual 2024-06-02 05:10:33 -05:00
1c204d765e Add gmi test; update H5 2024-05-29 09:48:54 -05:00
93e604817b Reformat source code 2024-05-29 09:04:59 -05:00
e9deac94a5 Move collect_gmi to gmi.jl 2024-05-29 09:01:51 -05:00
9c61b98cb9 Make GMI cuts more stable 2024-03-12 13:56:34 -05:00
35 changed files with 2362 additions and 527 deletions

View File

@@ -1,11 +1,12 @@
name = "MIPLearn"
uuid = "2b1277c3-b477-4c49-a15e-7ba350325c68"
authors = ["Alinson S Xavier <git@axavier.org>"]
version = "0.4.0"
version = "0.4.2"
[deps]
Conda = "8f4d0f93-b110-5947-807f-2305c1781a2d"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Gurobi = "2e9cd046-0924-5485-92f1-d5272153d98b"
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
@@ -15,10 +16,12 @@ KLU = "ef3ab10e-7fda-4108-b977-705223b18434"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
@@ -26,16 +29,19 @@ TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
[compat]
Conda = "1"
DataStructures = "0.18"
Gurobi = "1.7.5"
HDF5 = "0.16"
HiGHS = "1"
JLD2 = "0.4"
JSON = "0.21"
julia = "1"
JuMP = "1"
KLU = "0.4"
MathOptInterface = "1"
OrderedCollections = "1"
PrecompileTools = "1"
PyCall = "1"
Requires = "1"
SCIP = "0.12"
Statistics = "1"
TimerOutputs = "0.5"
julia = "1"

2
deps/build.jl vendored
View File

@@ -5,7 +5,7 @@ function install_miplearn()
Conda.update()
pip = joinpath(dirname(pyimport("sys").executable), "pip")
isfile(pip) || error("$pip: invalid path")
run(`$pip install miplearn==0.4.0`)
run(`$pip install miplearn==0.4.4`)
end
install_miplearn()

View File

@@ -6,7 +6,7 @@ using Printf
function print_progress_header()
@printf(
"%8s %9s %9s %13s %13s %9s %6s %13s %6s %-24s %9s %9s %6s %6s",
"%8s %9s %9s %13s %13s %9s %9s %13s %9s %-24s %9s %9s %6s %6s",
"time",
"processed",
"pending",
@@ -46,7 +46,7 @@ function print_progress(
branch_ub = @sprintf("%9.2f", last(node.branch_ub))
end
@printf(
"%8.2f %9d %9d %13.6e %13.6e %9.2e %6d %13.6e %6s %-24s %9s %9s %6d %6d",
"%8.2f %9d %9d %13.6e %13.6e %9.2e %9d %13.6e %9s %-24s %9s %9s %6d %6d",
time_elapsed,
pool.processed,
length(pool.processing) + length(pool.pending),

View File

@@ -134,7 +134,11 @@ function _get_int_variables(
var_ub = constr.upper
MOI.delete(optimizer, _upper_bound_index(var))
end
MOI.add_constraint(optimizer, var, MOI.Interval(var_lb, var_ub))
MOI.add_constraint(
optimizer,
MOI.VariableIndex(var.index),
MOI.Interval(var_lb, var_ub),
)
end
push!(vars, var)
push!(lb, var_lb)

View File

@@ -4,15 +4,22 @@
module Cuts
using PyCall
import ..to_str_array
include("tableau/structs.jl")
# include("blackbox/cplex.jl")
include("tableau/collect.jl")
include("tableau/numerics.jl")
include("tableau/gmi.jl")
include("tableau/gmi_dual.jl")
include("tableau/moi.jl")
include("tableau/tableau.jl")
include("tableau/transform.jl")
function __init__()
__init_gmi_dual__()
end
end # module

View File

@@ -1,184 +0,0 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import ..H5File
using OrderedCollections
function collect_gmi(mps_filename; optimizer, max_rounds = 10, max_cuts_per_round = 100)
@info mps_filename
reset_timer!()
# Open HDF5 file
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
h5 = H5File(h5_filename)
# Read optimal solution
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
# Read optimal value
obj_mip = h5.get_scalar("mip_lower_bound")
if obj_mip === nothing
obj_mip = h5.get_scalar("mip_obj_value")
end
obj_lp = nothing
h5.file.close()
# Define relative MIP gap
gap(v) = 100 * abs(obj_mip - v) / abs(v)
# Initialize stats
stats_obj = []
stats_gap = []
stats_ncuts = []
stats_time_convert = 0
stats_time_solve = 0
stats_time_select = 0
stats_time_tableau = 0
stats_time_gmi = 0
all_cuts = nothing
# Read problem
model = read_from_file(mps_filename)
for round = 1:max_rounds
@info "Round $(round)..."
stats_time_convert = @elapsed begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
@assert all(data.constr_lb .- 1e-3 .<= data.constr_lhs * sol_opt)
@assert all(data.constr_lhs * sol_opt .<= data.constr_ub .+ 1e-3)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
@assert data_s.constr_lhs * sol_opt_s data_s.constr_lb
end
# Optimize standard form
optimize!(model_s)
stats_time_solve += solve_time(model_s)
obj = objective_value(model_s) + data_s.obj_offset
if obj_lp === nothing
obj_lp = obj
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
push!(stats_ncuts, 0)
end
if termination_status(model_s) != MOI.OPTIMAL
return
end
# Select tableau rows
basis = get_basis(model_s)
sol_frac = get_x(model_s)
stats_time_select += @elapsed begin
selected_rows =
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
end
# Compute selected tableau rows
stats_time_tableau += @elapsed begin
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
# Assert tableau rows have been computed correctly
@assert tableau.lhs * sol_frac tableau.rhs
@assert tableau.lhs * sol_opt_s tableau.rhs
end
# Compute GMI cuts
stats_time_gmi += @elapsed begin
cuts_s = compute_gmi(data_s, tableau)
# Assert cuts have been generated correctly
try
assert_cuts_off(cuts_s, sol_frac)
assert_does_not_cut_off(cuts_s, sol_opt_s)
catch
@warn "Invalid cuts detected. Discarding round $round cuts and aborting."
break
end
# Abort if no cuts are left
if length(cuts_s.lb) == 0
@info "No cuts generated. Aborting."
break
end
end
# Add GMI cuts to original problem
cuts = backwards(transforms, cuts_s)
assert_does_not_cut_off(cuts, sol_opt)
constrs = add_constraint_set(model, cuts)
# Optimize original form
set_optimizer(model, optimizer)
undo_relax = relax_integrality(model)
optimize!(model)
obj = objective_value(model)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
# Store useful cuts; drop useless ones from the problem
useful = [abs(shadow_price(c)) > 1e-3 for c in constrs]
drop = findall(useful .== false)
keep = findall(useful .== true)
delete.(model, constrs[drop])
if all_cuts === nothing
all_cuts = cuts
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
end
push!(stats_ncuts, length(all_cuts.lb))
undo_relax()
end
# Store cuts
if all_cuts !== nothing
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
h5 = H5File(h5_filename)
h5.put_sparse("cuts_lhs", all_cuts.lhs)
h5.put_array("cuts_lb", all_cuts.lb)
h5.put_array("cuts_ub", all_cuts.ub)
h5.file.close()
end
return OrderedDict(
"instance" => mps_filename,
"max_rounds" => max_rounds,
"rounds" => length(stats_obj) - 1,
"time_convert" => stats_time_convert,
"time_solve" => stats_time_solve,
"time_tableau" => stats_time_tableau,
"time_gmi" => stats_time_gmi,
"obj_mip" => obj_mip,
"obj_lp" => obj_lp,
"stats_obj" => stats_obj,
"stats_gap" => stats_gap,
"stats_ncuts" => stats_ncuts,
)
end
export collect_gmi

View File

@@ -2,16 +2,196 @@
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import ..H5File
using OrderedCollections
using SparseArrays
using Statistics
using TimerOutputs
@inline frac(x::Float64) = x - floor(x)
function collect_gmi(
mps_filename;
optimizer,
max_rounds = 10,
max_cuts_per_round = 100,
atol = 1e-4,
)
reset_timer!()
# Open HDF5 file
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
h5 = H5File(h5_filename)
# Read optimal solution
sol_opt_dict = Dict(
zip(
h5.get_array("static_var_names"),
convert(Array{Float64}, h5.get_array("mip_var_values")),
),
)
# Read optimal value
obj_mip = h5.get_scalar("mip_lower_bound")
if obj_mip === nothing
obj_mip = h5.get_scalar("mip_obj_value")
end
obj_lp = h5.get_scalar("lp_obj_value")
h5.file.close()
# Define relative MIP gap
gap(v) = 100 * abs(obj_mip - v) / abs(v)
# Initialize stats
stats_obj = []
stats_gap = []
stats_ncuts = []
stats_time_convert = 0
stats_time_solve = 0
stats_time_select = 0
stats_time_tableau = 0
stats_time_gmi = 0
all_cuts = nothing
# Read problem
model = read_from_file(mps_filename)
for round = 1:max_rounds
@info "Round $(round)..."
stats_time_convert = @elapsed begin
# Extract problem data
data = ProblemData(model)
# Construct optimal solution vector (with correct variable sequence)
sol_opt = [sol_opt_dict[n] for n in data.var_names]
# Assert optimal solution is feasible for the original problem
assert_leq(data.constr_lb, data.constr_lhs * sol_opt)
assert_leq(data.constr_lhs * sol_opt, data.constr_ub)
# Convert to standard form
data_s, transforms = convert_to_standard_form(data)
model_s = to_model(data_s)
set_optimizer(model_s, optimizer)
relax_integrality(model_s)
# Convert optimal solution to standard form
sol_opt_s = forward(transforms, sol_opt)
# Assert converted solution is feasible for standard form problem
assert_eq(data_s.constr_lhs * sol_opt_s, data_s.constr_lb)
end
# Optimize standard form
optimize!(model_s)
stats_time_solve += solve_time(model_s)
obj = objective_value(model_s)
if round == 1
# Assert standard form problem has same value as original
assert_eq(obj, obj_lp)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
push!(stats_ncuts, 0)
end
if termination_status(model_s) != MOI.OPTIMAL
return
end
# Select tableau rows
basis = get_basis(model_s)
sol_frac = get_x(model_s)
stats_time_select += @elapsed begin
selected_rows =
select_gmi_rows(data_s, basis, sol_frac, max_rows = max_cuts_per_round)
end
# Compute selected tableau rows
stats_time_tableau += @elapsed begin
tableau = compute_tableau(data_s, basis, sol_frac, rows = selected_rows)
# Assert tableau rows have been computed correctly
assert_eq(tableau.lhs * sol_frac, tableau.rhs)
assert_eq(tableau.lhs * sol_opt_s, tableau.rhs)
end
# Compute GMI cuts
stats_time_gmi += @elapsed begin
cuts_s = compute_gmi(data_s, tableau)
# Assert cuts have been generated correctly
assert_cuts_off(cuts_s, sol_frac)
assert_does_not_cut_off(cuts_s, sol_opt_s)
# Abort if no cuts are left
if length(cuts_s.lb) == 0
@info "No cuts generated. Stopping."
break
end
end
# Add GMI cuts to original problem
cuts = backwards(transforms, cuts_s)
assert_does_not_cut_off(cuts, sol_opt)
constrs = add_constraint_set(model, cuts)
# Optimize original form
set_optimizer(model, optimizer)
undo_relax = relax_integrality(model)
optimize!(model)
obj = objective_value(model)
push!(stats_obj, obj)
push!(stats_gap, gap(obj))
# Store useful cuts; drop useless ones from the problem
useful = [abs(shadow_price(c)) > atol for c in constrs]
drop = findall(useful .== false)
keep = findall(useful .== true)
delete.(model, constrs[drop])
if all_cuts === nothing
all_cuts = cuts
else
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
all_cuts.ub = [all_cuts.ub; cuts.ub[keep]]
end
push!(stats_ncuts, length(all_cuts.lb))
undo_relax()
end
# Store cuts
if all_cuts !== nothing
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
h5 = H5File(h5_filename)
h5.put_sparse("cuts_lhs", all_cuts.lhs)
h5.put_array("cuts_lb", all_cuts.lb)
h5.put_array("cuts_ub", all_cuts.ub)
h5.file.close()
end
return OrderedDict(
"instance" => mps_filename,
"max_rounds" => max_rounds,
"rounds" => length(stats_obj) - 1,
"time_convert" => stats_time_convert,
"time_solve" => stats_time_solve,
"time_tableau" => stats_time_tableau,
"time_gmi" => stats_time_gmi,
"obj_mip" => obj_mip,
"stats_obj" => stats_obj,
"stats_gap" => stats_gap,
"stats_ncuts" => stats_ncuts,
)
end
function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
candidate_rows = [
r for
r = 1:length(basis.var_basic) if (data.var_types[basis.var_basic[r]] != 'C') &&
(frac(x[basis.var_basic[r]]) > atol)
r for r = 1:length(basis.var_basic) if (
(data.var_types[basis.var_basic[r]] != 'C') &&
(frac(x[basis.var_basic[r]]) > atol) &&
(frac2(x[basis.var_basic[r]]) > atol)
)
]
candidate_vals = frac.(x[basis.var_basic[candidate_rows]])
score = abs.(candidate_vals .- 0.5)
@@ -19,66 +199,122 @@ function select_gmi_rows(data, basis, x; max_rows = 10, atol = 0.001)
return [candidate_rows[perm[i]] for i = 1:min(length(perm), max_rows)]
end
function compute_gmi(data::ProblemData, tableau::Tableau, tol = 1e-8)::ConstraintSet
nrows, ncols = size(tableau.lhs)
ub = Float64[Inf for _ = 1:nrows]
lb = Float64[0.999 for _ = 1:nrows]
tableau_I, tableau_J, tableau_V = findnz(tableau.lhs)
lhs_I = Int[]
lhs_J = Int[]
lhs_V = Float64[]
# function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
# @timeit "Initialization" begin
# nrows, ncols = size(tableau.lhs)
# ub = Float64[Inf for _ = 1:nrows]
# lb = Float64[0.999 for _ = 1:nrows]
# tableau_I, tableau_J, tableau_V = findnz(tableau.lhs)
# lhs_I = Int[]
# lhs_J = Int[]
# lhs_V = Float64[]
# end
# @timeit "Compute coefficients" begin
# for k = 1:nnz(tableau.lhs)
# i::Int = tableau_I[k]
# j::Int = tableau_J[k]
# v::Float64 = 0.0
# frac_alpha_j = frac(tableau_V[k])
# alpha_j = tableau_V[k]
# beta = frac(tableau.rhs[i])
# if data.var_types[j] == 'C'
# if alpha_j >= 0
# v = alpha_j / beta
# else
# v = -alpha_j / (1 - beta)
# end
# else
# if frac_alpha_j < beta
# v = frac_alpha_j / beta
# else
# v = (1 - frac_alpha_j) / (1 - beta)
# end
# end
# if abs(v) > 1e-8
# push!(lhs_I, i)
# push!(lhs_J, tableau_J[k])
# push!(lhs_V, v)
# end
# end
# end
# @timeit "Convert to ConstraintSet" begin
# lhs = sparse(lhs_I, lhs_J, lhs_V, nrows, ncols)
# cs = ConstraintSet(; lhs, ub, lb)
# end
# return cs
# end
function compute_gmi(data::ProblemData, tableau::Tableau)::ConstraintSet
@timeit "Initialization" begin
nrows::Int, ncols::Int = size(tableau.lhs)
var_types::Vector{Char} = data.var_types
tableau_rhs::Vector{Float64} = tableau.rhs
tableau_I::Vector{Int}, tableau_J::Vector{Int}, tableau_V::Vector{Float64} = findnz(tableau.lhs)
end
@timeit "Pre-allocation" begin
cut_ub::Vector{Float64} = fill(Inf, nrows)
cut_lb::Vector{Float64} = fill(0.999, nrows)
nnz_tableau::Int = length(tableau_I)
cut_lhs_I::Vector{Int} = Vector{Int}(undef, nnz_tableau)
cut_lhs_J::Vector{Int} = Vector{Int}(undef, nnz_tableau)
cut_lhs_V::Vector{Float64} = Vector{Float64}(undef, nnz_tableau)
cut_hash::Vector{UInt64} = zeros(UInt64, nrows)
nnz_count::Int = 0
end
@timeit "Compute coefficients" begin
for k = 1:nnz(tableau.lhs)
@inbounds for k = 1:nnz_tableau
i::Int = tableau_I[k]
v::Float64 = 0.0
alpha_j = frac(tableau_V[k])
beta = frac(tableau.rhs[i])
if data.var_types[i] == "C"
j::Int = tableau_J[k]
alpha_j::Float64 = tableau_V[k]
frac_alpha_j::Float64 = alpha_j - floor(alpha_j)
beta_i::Float64 = tableau_rhs[i]
beta::Float64 = beta_i - floor(beta_i)
v::Float64 = 0
# Compute coefficient
if var_types[j] == 'C'
if alpha_j >= 0
v = alpha_j / beta
else
v = alpha_j / (1 - beta)
v = -alpha_j / (1 - beta)
end
else
if alpha_j <= beta
v = alpha_j / beta
if frac_alpha_j < beta
v = frac_alpha_j / beta
else
v = (1 - alpha_j) / (1 - beta)
v = (1 - frac_alpha_j) / (1 - beta)
end
end
if abs(v) > tol
push!(lhs_I, i)
push!(lhs_J, tableau_J[k])
push!(lhs_V, v)
# Store if significant
if abs(v) > 1e-8
nnz_count += 1
cut_lhs_I[nnz_count] = i
cut_lhs_J[nnz_count] = j
cut_lhs_V[nnz_count] = v
cut_hash[i] = hash(j, cut_hash[i])
cut_hash[i] = hash(v, cut_hash[i])
end
end
lhs = sparse(lhs_I, lhs_J, lhs_V, nrows, ncols)
end
return ConstraintSet(; lhs, ub, lb)
@timeit "Resize arrays to actual size" begin
resize!(cut_lhs_I, nnz_count)
resize!(cut_lhs_J, nnz_count)
resize!(cut_lhs_V, nnz_count)
end
# TODO: Build cut in compressed row format instead of converting
@timeit "Convert to ConstraintSet" begin
cut_lhs::SparseMatrixCSC = sparse(cut_lhs_I, cut_lhs_J, cut_lhs_V, nrows, ncols)
cs::ConstraintSet = ConstraintSet(; lhs=cut_lhs, ub=cut_ub, lb=cut_lb, hash=cut_hash)
end
return cs
end
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x
if (val <= cuts.ub[i] - tol) && (val >= cuts.lb[i] + tol)
throw(ErrorException("inequality fails to cut off fractional solution"))
end
end
end
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
for i = 1:length(cuts.lb)
val = cuts.lhs[i, :]' * x
ub = cuts.ub[i]
lb = cuts.lb[i]
if (val >= ub) || (val <= lb)
throw(
ErrorException(
"inequality $i cuts off integer solution ($lb <= $val <= $ub)",
),
)
end
end
end
export compute_gmi, frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off
export compute_gmi,
frac, select_gmi_rows, assert_cuts_off, assert_does_not_cut_off, collect_gmi

1289
src/Cuts/tableau/gmi_dual.jl Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -9,6 +9,8 @@ function ProblemData(model::Model)::ProblemData
# Objective function
obj = objective_function(model)
obj_offset = obj.constant
obj_sense = objective_sense(model)
obj = [v keys(obj.terms) ? obj.terms[v] : 0.0 for v in vars]
# Variable types, lower bounds and upper bounds
@@ -86,8 +88,9 @@ function ProblemData(model::Model)::ProblemData
@assert length(constr_ub) == m
return ProblemData(
obj_offset = 0.0;
obj,
obj_offset,
obj_sense,
constr_lb,
constr_ub,
constr_lhs,
@@ -102,6 +105,7 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
model = Model()
# Variables
obj_expr = AffExpr(data.obj_offset)
nvars = length(data.obj)
@variable(model, x[1:nvars])
for i = 1:nvars
@@ -117,8 +121,9 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
if isfinite(data.var_ub[i])
set_upper_bound(x[i], data.var_ub[i])
end
set_objective_coefficient(model, x[i], data.obj[i])
add_to_expression!(obj_expr, x[i], data.obj[i])
end
@objective(model, data.obj_sense, obj_expr)
# Constraints
lhs = data.constr_lhs * x
@@ -140,19 +145,9 @@ function to_model(data::ProblemData, tol = 1e-6)::Model
end
function add_constraint_set(model::JuMP.Model, cs::ConstraintSet)
vars = all_variables(model)
nrows, _ = size(cs.lhs)
constrs = []
for i = 1:nrows
c = nothing
if isinf(cs.ub[i])
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars))
elseif isinf(cs.lb[i])
c = @constraint(model, dot(cs.lhs[i, :], vars) <= cs.ub[i])
else
c = @constraint(model, cs.lb[i] <= dot(cs.lhs[i, :], vars) <= cs.ub[i])
end
push!(constrs, c)
constrs = build_constraints(model, cs)
for c in constrs
add_constraint(model, c)
end
return constrs
end
@@ -164,4 +159,30 @@ function set_warm_start(model::JuMP.Model, x::Vector{Float64})
end
end
export to_model, ProblemData, add_constraint_set, set_warm_start
function build_constraints(model::JuMP.Model, cs::ConstraintSet)
vars = all_variables(model)
nrows, _ = size(cs.lhs)
constrs = []
for i = 1:nrows
# Build LHS expression
row = cs.lhs[i, :]
lhs_expr = AffExpr()
for (offset, val) in enumerate(row.nzval)
add_to_expression!(lhs_expr, vars[row.nzind[offset]], val)
end
# Build JuMP constraint
c = nothing
if isinf(cs.ub[i])
c = @build_constraint(cs.lb[i] <= lhs_expr)
elseif isinf(cs.lb[i])
c = @build_constraint(lhs_expr <= cs.ub[i])
else
c = @build_constraint(cs.lb[i] <= lhs_expr <= cs.ub[i])
end
push!(constrs, c)
end
return constrs
end
export to_model, ProblemData, add_constraint_set, set_warm_start, build_constraints

View File

@@ -0,0 +1,52 @@
@inline frac(x::Float64) = x - floor(x)
@inline frac2(x::Float64) = ceil(x) - x
function assert_leq(a, b; atol = 0.01)
if !all(a .<= b .+ atol)
delta = a .- b
for i in eachindex(delta)
if delta[i] > atol
@info "Assertion failed: a[$i] = $(a[i]) <= $(b[i]) = b[$i]"
end
end
error("assert_leq failed")
end
end
function assert_eq(a, b; atol = 1e-4)
if !all(abs.(a .- b) .<= atol)
delta = abs.(a .- b)
for i in eachindex(delta)
if delta[i] > atol
@info "Assertion failed: a[$i] = $(a[i]) == $(b[i]) = b[$i]"
end
end
error("assert_eq failed")
end
end
function assert_cuts_off(cuts::ConstraintSet, x::Vector{Float64}, tol = 1e-6)
vals = cuts.lhs * x
for i = 1:length(cuts.lb)
if (vals[i] <= cuts.ub[i] - tol) && (vals[i] >= cuts.lb[i] + tol)
throw(ErrorException("inequality $i fails to cut off fractional solution: $(cuts.lb[i]) <= $(vals[i]) <= $(cuts.ub[i])"))
end
end
end
function assert_does_not_cut_off(cuts::ConstraintSet, x::Vector{Float64}; tol = 1e-6)
vals = cuts.lhs * x
for i = 1:length(cuts.lb)
if (vals[i] >= cuts.ub[i]) || (vals[i] <= cuts.lb[i])
throw(ErrorException("inequality $i cuts off integer solution: $(cuts.lb[i]) <= $(vals[i]) <= $(cuts.ub[i])"))
end
end
end
function assert_int(x::Float64, tol=1e-5)
fx = frac(x)
if min(fx, 1 - fx) >= tol
throw(ErrorException("Number must be integer: $x"))
end
end

View File

@@ -7,6 +7,7 @@ using SparseArrays
Base.@kwdef mutable struct ProblemData
obj::Vector{Float64}
obj_offset::Float64
obj_sense::Any
constr_lb::Vector{Float64}
constr_ub::Vector{Float64}
constr_lhs::SparseMatrixCSC
@@ -17,10 +18,10 @@ Base.@kwdef mutable struct ProblemData
end
Base.@kwdef mutable struct Tableau
obj::Any
lhs::Any
rhs::Any
z::Any
obj::Vector{Float64}
lhs::SparseMatrixCSC
rhs::Vector{Float64}
z::Float64
end
Base.@kwdef mutable struct Basis
@@ -34,6 +35,7 @@ Base.@kwdef mutable struct ConstraintSet
lhs::SparseMatrixCSC
ub::Vector{Float64}
lb::Vector{Float64}
hash::Union{Nothing,Vector{UInt64}} = nothing
end
export ProblemData, Tableau, Basis, ConstraintSet

View File

@@ -4,48 +4,161 @@
using KLU
using TimerOutputs
using Gurobi
function get_basis(model::JuMP.Model)::Basis
var_basic = Int[]
var_nonbasic = Int[]
constr_basic = Int[]
constr_nonbasic = Int[]
# Variables
for (i, var) in enumerate(all_variables(model))
bstatus = MOI.get(model, MOI.VariableBasisStatus(), var)
if bstatus == MOI.BASIC
push!(var_basic, i)
elseif bstatus == MOI.NONBASIC_AT_LOWER
push!(var_nonbasic, i)
else
error("Unknown basis status: $bstatus")
end
if isa(unsafe_backend(model), Gurobi.Optimizer)
return get_basis_gurobi(model)
end
# Constraints
constr_index = 1
for (ftype, stype) in list_of_constraint_types(model)
for constr in all_constraints(model, ftype, stype)
if ftype == VariableRef
# nop
elseif ftype == AffExpr
bstatus = MOI.get(model, MOI.ConstraintBasisStatus(), constr)
if bstatus == MOI.BASIC
push!(constr_basic, constr_index)
elseif bstatus == MOI.NONBASIC
push!(constr_nonbasic, constr_index)
else
error("Unknown basis status: $bstatus")
end
constr_index += 1
@timeit "Initialization" begin
var_basic = Int[]
var_nonbasic = Int[]
constr_basic = Int[]
constr_nonbasic = Int[]
nvars = num_variables(model)
sizehint!(var_basic, nvars)
sizehint!(var_nonbasic, nvars)
end
@timeit "Query variables" begin
for (i, var) in enumerate(all_variables(model))
bstatus = MOI.get(model, MOI.VariableBasisStatus(), var)
if bstatus == MOI.BASIC
push!(var_basic, i)
elseif bstatus == MOI.NONBASIC_AT_LOWER
push!(var_nonbasic, i)
else
error("Unsupported constraint type: ($ftype, $stype)")
error("Unknown basis status: $bstatus")
end
end
end
return Basis(; var_basic, var_nonbasic, constr_basic, constr_nonbasic)
@timeit "Query constraints" begin
constr_index = 1
for (ftype, stype) in list_of_constraint_types(model)
for constr in all_constraints(model, ftype, stype)
if ftype == VariableRef
# nop
elseif ftype == AffExpr
bstatus = MOI.get(model, MOI.ConstraintBasisStatus(), constr)
if bstatus == MOI.BASIC
push!(constr_basic, constr_index)
elseif bstatus == MOI.NONBASIC
push!(constr_nonbasic, constr_index)
else
error("Unknown basis status: $bstatus")
end
constr_index += 1
else
error("Unsupported constraint type: ($ftype, $stype)")
end
end
end
end
@timeit "Build basis struct" begin
basis = Basis(; var_basic, var_nonbasic, constr_basic, constr_nonbasic)
end
return basis
end
function set_basis(model::JuMP.Model, basis::Basis)
if isa(unsafe_backend(model), Gurobi.Optimizer)
# NOP
return
end
@timeit "Initialization" begin
nvars = num_variables(model)
gurobi_model = unsafe_backend(model).inner
end
@timeit "Set variable basis" begin
var_basis_statuses = Vector{Cint}(undef, nvars)
fill!(var_basis_statuses, -1) # Default to GRB_NONBASIC_LOWER
for var_idx in basis.var_basic
var_basis_statuses[var_idx] = 0 # GRB_BASIC
end
ret = GRBsetintattrarray(gurobi_model, "VBasis", 0, nvars, var_basis_statuses)
if ret != 0
error("Failed to set variable basis statuses in Gurobi: error code $ret")
end
end
@timeit "Set constraint basis" begin
nconstr = num_constraints(model, AffExpr, MOI.EqualTo{Float64})
constr_basis_statuses = Vector{Cint}(undef, nconstr)
fill!(constr_basis_statuses, -1) # Default to GRB_NONBASIC
for constr_idx in basis.constr_basic
constr_basis_statuses[constr_idx] = 0 # GRB_BASIC
end
ret = GRBsetintattrarray(gurobi_model, "CBasis", 0, nconstr, constr_basis_statuses)
if ret != 0
error("Failed to set constraint basis statuses in Gurobi: error code $ret")
end
end
return nothing
end
function get_basis_gurobi(model::JuMP.Model)::Basis
@timeit "Initialization" begin
var_basic = Int[]
var_nonbasic = Int[]
constr_basic = Int[]
constr_nonbasic = Int[]
nvars = num_variables(model)
sizehint!(var_basic, nvars)
sizehint!(var_nonbasic, nvars)
gurobi_model = unsafe_backend(model).inner
end
@timeit "Query variables" begin
var_basis_statuses = Vector{Cint}(undef, nvars)
ret = GRBgetintattrarray(gurobi_model, "VBasis", 0, nvars, var_basis_statuses)
if ret != 0
error("Failed to get variable basis statuses from Gurobi: error code $ret")
end
for i in 1:nvars
if var_basis_statuses[i] == 0 # GRB_BASIC
push!(var_basic, i)
elseif var_basis_statuses[i] == -1 # GRB_NONBASIC_LOWER
push!(var_nonbasic, i)
else
error("Unknown variable basis status: $(var_basis_statuses[i])")
end
end
end
@timeit "Query constraints" begin
nconstr = num_constraints(model, AffExpr, MOI.EqualTo{Float64})
constr_basis_statuses = Vector{Cint}(undef, nconstr)
ret = GRBgetintattrarray(gurobi_model, "CBasis", 0, nconstr, constr_basis_statuses)
if ret != 0
error("Failed to get constraint basis statuses from Gurobi: error code $ret")
end
for i in 1:nconstr
if constr_basis_statuses[i] == 0 # GRB_BASIC
push!(constr_basic, i)
elseif constr_basis_statuses[i] == -1 # GRB_NONBASIC
push!(constr_nonbasic, i)
else
error("Unknown constraint basis status: $(constr_basis_statuses[i])")
end
end
end
@timeit "Build basis struct" begin
basis = Basis(; var_basic, var_nonbasic, constr_basic, constr_nonbasic)
end
return basis
end
function get_x(model::JuMP.Model)
@@ -54,11 +167,16 @@ end
function compute_tableau(
data::ProblemData,
basis::Basis,
x::Vector{Float64};
basis::Basis;
x::Union{Nothing,Vector{Float64}} = nothing,
rows::Union{Vector{Int},Nothing} = nothing,
tol = 1e-8,
estimated_density = 0.10,
)::Tableau
if isnan(estimated_density) || estimated_density <= 0
estimated_density = 0.10
end
@timeit "Split data" begin
nrows, ncols = size(data.constr_lhs)
lhs_slacks = sparse(I, nrows, nrows)
@@ -73,53 +191,80 @@ function compute_tableau(
factor = klu(sparse(lhs_b'))
end
@timeit "Compute tableau LHS" begin
tableau_lhs_I = Int[]
tableau_lhs_J = Int[]
tableau_lhs_V = Float64[]
for k = 1:length(rows)
@timeit "Prepare inputs" begin
i = rows[k]
e = zeros(nrows)
e[i] = 1.0
end
@timeit "Solve" begin
sol = factor \ e
end
@timeit "Multiply" begin
row = sol' * data.constr_lhs
end
@timeit "Sparsify & copy" begin
for (j, v) in enumerate(row)
if abs(v) < tol
continue
end
push!(tableau_lhs_I, k)
push!(tableau_lhs_J, j)
push!(tableau_lhs_V, v)
end
end
end
tableau_lhs =
sparse(tableau_lhs_I, tableau_lhs_J, tableau_lhs_V, length(rows), ncols)
@timeit "Initialize arrays" begin
num_rows = length(rows)
tableau_rhs::Array{Float64} = zeros(num_rows)
tableau_rowptr::Array{Int} = zeros(Int, num_rows + 1)
tableau_colval::Array{Int} = Int[]
tableau_nzval::Array{Float64} = Float64[]
estimated_nnz::Int = round(num_rows * ncols * estimated_density)
sizehint!(tableau_colval, estimated_nnz)
sizehint!(tableau_nzval, estimated_nnz)
e::Array{Float64} = zeros(nrows)
sol::Array{Float64} = zeros(nrows)
tableau_row::Array{Float64} = zeros(ncols)
end
@timeit "Compute tableau RHS" begin
tableau_rhs = [x[basis.var_basic]; zeros(length(basis.constr_basic))][rows]
A = data.constr_lhs'
b = data.constr_ub
tableau_rowptr[1] = 1
@timeit "Process rows" begin
for k in eachindex(rows)
@timeit "Solve" begin
fill!(e, 0.0)
e[rows[k]] = 1.0
ldiv!(sol, factor, e)
end
@timeit "Compute row" begin
mul!(tableau_row, A, sol)
tableau_rhs[k] = dot(sol, b)
end
needed_space = length(tableau_colval) + ncols
if needed_space > estimated_nnz
@timeit "Grow arrays" begin
estimated_nnz *= 2
sizehint!(tableau_colval, estimated_nnz)
sizehint!(tableau_nzval, estimated_nnz)
end
end
@timeit "Collect nonzeros for row" begin
for j in 1:ncols
val = tableau_row[j]
if abs(val) > tol
push!(tableau_colval, j)
push!(tableau_nzval, val)
end
end
end
tableau_rowptr[k + 1] = length(tableau_colval) + 1
end
end
@timeit "Shrink arrays" begin
sizehint!(tableau_colval, length(tableau_colval))
sizehint!(tableau_nzval, length(tableau_nzval))
end
@timeit "Build sparse matrix" begin
tableau_lhs_transposed = SparseMatrixCSC(ncols, num_rows, tableau_rowptr, tableau_colval, tableau_nzval)
tableau_lhs = transpose(tableau_lhs_transposed)
end
@timeit "Compute tableau objective row" begin
sol = factor \ obj_b
tableau_obj = -data.obj' + sol' * data.constr_lhs
tableau_obj[abs.(tableau_obj).<tol] .= 0
tableau_obj = Array(tableau_obj')
end
return Tableau(
obj = tableau_obj,
lhs = tableau_lhs,
rhs = tableau_rhs,
z = dot(data.obj, x),
)
# Compute z if solution is provided
z = 0
if x !== nothing
z = dot(data.obj, x)
end
return Tableau(obj = tableau_obj, lhs = tableau_lhs, rhs = tableau_rhs, z = z)
end
export get_basis, get_x, compute_tableau
export get_basis, get_basis_gurobi, set_basis, get_x, compute_tableau

View File

@@ -96,46 +96,70 @@ Base.@kwdef mutable struct AddSlackVariables <: Transform
end
function forward!(t::AddSlackVariables, data::ProblemData)
nrows, ncols = size(data.constr_lhs)
isequality = abs.(data.constr_ub .- data.constr_lb) .< 1e-6
eq = [i for i = 1:nrows if isequality[i]]
ge = [i for i = 1:nrows if isfinite(data.constr_lb[i]) && !isequality[i]]
le = [i for i = 1:nrows if isfinite(data.constr_ub[i]) && !isequality[i]]
EQ, GE, LE = length(eq), length(ge), length(le)
t.M1 = [
I spzeros(ncols, GE + LE)
data.constr_lhs[ge, :] spzeros(GE, GE + LE)
-data.constr_lhs[le, :] spzeros(LE, GE + LE)
]
t.M2 = [
zeros(ncols)
data.constr_lb[ge]
-data.constr_ub[le]
]
t.ncols_orig = ncols
t.GE, t.LE = GE, LE
t.lhs_ge = data.constr_lhs[ge, :]
t.lhs_le = data.constr_lhs[le, :]
t.rhs_ge = data.constr_lb[ge]
t.rhs_le = data.constr_ub[le]
data.constr_lhs = [
data.constr_lhs[eq, :] spzeros(EQ, GE) spzeros(EQ, LE)
data.constr_lhs[ge, :] -I spzeros(GE, LE)
data.constr_lhs[le, :] spzeros(LE, GE) I
]
data.obj = [data.obj; zeros(GE + LE)]
data.var_lb = [data.var_lb; zeros(GE + LE)]
data.var_ub = [data.var_ub; [Inf for _ = 1:(GE+LE)]]
data.var_names = [data.var_names; ["__s$i" for i = 1:(GE+LE)]]
data.var_types = [data.var_types; ['C' for _ = 1:(GE+LE)]]
data.constr_lb = [
data.constr_lb[eq]
data.constr_lb[ge]
data.constr_ub[le]
]
data.constr_ub = copy(data.constr_lb)
@timeit "Identify constraint type" begin
nrows, ncols = size(data.constr_lhs)
isequality = abs.(data.constr_ub .- data.constr_lb) .< 1e-6
eq = [i for i = 1:nrows if isequality[i]]
ge = [i for i = 1:nrows if isfinite(data.constr_lb[i]) && !isequality[i]]
le = [i for i = 1:nrows if isfinite(data.constr_ub[i]) && !isequality[i]]
EQ, GE, LE = length(eq), length(ge), length(le)
end
@timeit "Identify slack type" begin
constr_lhs_t = sparse(data.constr_lhs')
function is_integral(row_idx, rhs)
rhs_is_integer = abs(rhs - round(rhs)) <= 1e-6
cols, coeffs = findnz(constr_lhs_t[:, row_idx])[1:2]
vars_are_integer = all(j -> data.var_types[j] ['I', 'B'], cols)
coeffs_are_integer = all(v -> abs(v - round(v)) <= 1e-6, coeffs)
return rhs_is_integer && vars_are_integer && coeffs_are_integer
end
slack_types = [
[is_integral(ge[i], data.constr_lb[ge[i]]) ? 'I' : 'C' for i = 1:GE];
[is_integral(le[i], data.constr_ub[le[i]]) ? 'I' : 'C' for i = 1:LE]
]
end
@timeit "Build M1" begin
t.M1 = [
I spzeros(ncols, GE + LE)
data.constr_lhs[ge, :] spzeros(GE, GE + LE)
-data.constr_lhs[le, :] spzeros(LE, GE + LE)
]
end
@timeit "Build M2" begin
t.M2 = [
zeros(ncols)
data.constr_lb[ge]
-data.constr_ub[le]
]
end
@timeit "Build t.lhs, t.rhs" begin
t.ncols_orig = ncols
t.GE, t.LE = GE, LE
t.lhs_ge = data.constr_lhs[ge, :]
t.lhs_le = data.constr_lhs[le, :]
t.rhs_ge = data.constr_lb[ge]
t.rhs_le = data.constr_ub[le]
end
@timeit "Build data.constr_lhs" begin
data.constr_lhs = [
data.constr_lhs[eq, :] spzeros(EQ, GE) spzeros(EQ, LE)
data.constr_lhs[ge, :] -I spzeros(GE, LE)
data.constr_lhs[le, :] spzeros(LE, GE) I
]
end
@timeit "Build other data fields" begin
data.obj = [data.obj; zeros(GE + LE)]
data.var_lb = [data.var_lb; zeros(GE + LE)]
data.var_ub = [data.var_ub; [Inf for _ = 1:(GE+LE)]]
data.var_names = [data.var_names; ["__s$i" for i = 1:(GE+LE)]]
data.var_types = [data.var_types; slack_types]
data.constr_lb = [
data.constr_lb[eq]
data.constr_lb[ge]
data.constr_ub[le]
]
data.constr_ub = copy(data.constr_lb)
end
end
function backwards!(t::AddSlackVariables, c::ConstraintSet)
@@ -155,71 +179,55 @@ end
# -----------------------------------------------------------------------------
Base.@kwdef mutable struct SplitFreeVars <: Transform
F::Int = 0
B::Int = 0
free::Vector{Int} = []
others::Vector{Int} = []
ncols::Int = 0
is_var_free::Vector{Bool} = []
end
function forward!(t::SplitFreeVars, data::ProblemData)
lhs = data.constr_lhs
_, ncols = size(lhs)
free = [i for i = 1:ncols if !isfinite(data.var_lb[i]) && !isfinite(data.var_ub[i])]
others = [i for i = 1:ncols if isfinite(data.var_lb[i]) || isfinite(data.var_ub[i])]
t.F = length(free)
t.B = length(others)
t.free, t.others = free, others
is_var_free = [!isfinite(data.var_lb[i]) && !isfinite(data.var_ub[i]) for i = 1:ncols]
free_idx = findall(is_var_free)
data.obj = [
data.obj[others]
data.obj[free]
-data.obj[free]
data.obj
[-data.obj[i] for i in free_idx]
]
data.constr_lhs = [lhs[:, others] lhs[:, free] -lhs[:, free]]
data.var_lb = [
data.var_lb[others]
[0.0 for _ in free]
[0.0 for _ in free]
[is_var_free[i] ? 0.0 : data.var_lb[i] for i in 1:ncols]
[0 for _ in free_idx]
]
data.var_ub = [
data.var_ub[others]
[Inf for _ in free]
[Inf for _ in free]
[is_var_free[i] ? Inf : data.var_ub[i] for i in 1:ncols]
[Inf for _ in free_idx]
]
data.var_types = [
data.var_types[others]
data.var_types[free]
data.var_types[free]
data.var_types
[data.var_types[i] for i in free_idx]
]
data.var_names = [
data.var_names[others]
["$(v)_p" for v in data.var_names[free]]
["$(v)_m" for v in data.var_names[free]]
data.var_names
["$(data.var_names[i])_neg" for i in free_idx]
]
data.constr_lhs = [lhs -lhs[:, free_idx]]
t.is_var_free, t.ncols = is_var_free, ncols
end
function backwards!(t::SplitFreeVars, c::ConstraintSet)
# Convert GE constraints into LE
nrows, _ = size(c.lhs)
ge = [i for i = 1:nrows if isfinite(c.lb[i])]
c.ub[ge], c.lb[ge] = -c.lb[ge], -c.ub[ge]
c.lhs[ge, :] *= -1
ncols, is_var_free = t.ncols, t.is_var_free
free_idx = findall(is_var_free)
# Assert only LE constraints are left (EQ constraints are not supported)
@assert all(c.lb .== -Inf)
# Take minimum (weakest) coefficient
B, F = t.B, t.F
for i = 1:F
c.lhs[:, B+i] = min.(c.lhs[:, B+i], -c.lhs[:, B+F+i])
for (offset, var_idx) in enumerate(free_idx)
@assert c.lhs[:, var_idx] == -c.lhs[:, ncols+offset]
end
c.lhs = c.lhs[:, 1:(B+F)]
c.lhs = c.lhs[:, 1:ncols]
end
function forward(t::SplitFreeVars, p::Vector{Float64})::Vector{Float64}
ncols, is_var_free = t.ncols, t.is_var_free
free_idx = findall(is_var_free)
return [
p[t.others]
max.(p[t.free], 0)
max.(-p[t.free], 0)
[is_var_free[i] ? max(0, p[i]) : p[i] for i in 1:ncols]
[max(0, -p[i]) for i in free_idx]
]
end

View File

@@ -6,11 +6,14 @@ module MIPLearn
using PyCall
using SparseArrays
using PrecompileTools: @setup_workload, @compile_workload
include("collectors.jl")
include("components.jl")
include("extractors.jl")
include("io.jl")
include("problems/maxcut.jl")
include("problems/setcover.jl")
include("problems/stab.jl")
include("problems/tsp.jl")
@@ -22,6 +25,7 @@ function __init__()
__init_components__()
__init_extractors__()
__init_io__()
__init_problems_maxcut__()
__init_problems_setcover__()
__init_problems_stab__()
__init_problems_tsp__()
@@ -32,4 +36,51 @@ end
include("BB/BB.jl")
include("Cuts/Cuts.jl")
# Precompilation
# =============================================================================
# function __precompile_cuts__()
# function build_model(mps_filename)
# model = read_from_file(mps_filename)
# set_optimizer(model, SCIP.Optimizer)
# return JumpModel(model)
# end
# BASEDIR = dirname(@__FILE__)
# mps_filename = "$BASEDIR/../test/fixtures/bell5.mps.gz"
# h5_filename = "$BASEDIR/../test/fixtures/bell5.h5"
# collect_gmi_dual(
# mps_filename;
# optimizer=HiGHS.Optimizer,
# max_rounds = 10,
# max_cuts_per_round = 500,
# )
# knn = KnnDualGmiComponent(
# extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"]),
# k = 2,
# )
# knn.fit([h5_filename, h5_filename])
# solver = LearningSolver(
# components = [
# ExpertPrimalComponent(action = SetWarmStart()),
# knn,
# ],
# skip_lp = true,
# )
# solver.optimize(mps_filename, build_model)
# end
# @setup_workload begin
# using SCIP
# using HiGHS
# using MIPLearn.Cuts
# using PrecompileTools: @setup_workload, @compile_workload
# __init__()
# Cuts.__init__()
# @compile_workload begin
# __precompile_cuts__()
# end
# end
end # module

View File

@@ -53,8 +53,14 @@ function __init_components__()
)
copy!(SelectTopSolutions, pyimport("miplearn.components.primal.mem").SelectTopSolutions)
copy!(MergeTopSolutions, pyimport("miplearn.components.primal.mem").MergeTopSolutions)
copy!(MemorizingCutsComponent, pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent)
copy!(MemorizingLazyComponent, pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent)
copy!(
MemorizingCutsComponent,
pyimport("miplearn.components.cuts.mem").MemorizingCutsComponent,
)
copy!(
MemorizingLazyComponent,
pyimport("miplearn.components.lazy.mem").MemorizingLazyComponent,
)
end
export MinProbabilityClassifier,

View File

@@ -39,14 +39,14 @@ end
function PyObject(m::SparseMatrixCSC)
pyimport("scipy.sparse").csc_matrix(
(m.nzval, m.rowval .- 1, m.colptr .- 1),
shape=size(m),
shape = size(m),
).tocoo()
end
function write_jld2(
objs::Vector,
dirname::AbstractString;
prefix::AbstractString=""
prefix::AbstractString = "",
)::Vector{String}
mkpath(dirname)
filenames = [@sprintf("%s/%s%05d.jld2", dirname, prefix, i) for i = 1:length(objs)]

31
src/problems/maxcut.jl Normal file
View File

@@ -0,0 +1,31 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
global MaxCutData = PyNULL()
global MaxCutGenerator = PyNULL()
function __init_problems_maxcut__()
copy!(MaxCutData, pyimport("miplearn.problems.maxcut").MaxCutData)
copy!(MaxCutGenerator, pyimport("miplearn.problems.maxcut").MaxCutGenerator)
end
function build_maxcut_model_jump(data::Any; optimizer)
if data isa String
data = read_pkl_gz(data)
end
nodes = collect(data.graph.nodes())
edges = collect(data.graph.edges())
model = Model(optimizer)
@variable(model, x[nodes], Bin)
@objective(
model,
Min,
sum(-data.weights[i] * x[e[1]] * (1 - x[e[2]]) for (i, e) in enumerate(edges))
)
return JumpModel(model)
end
export MaxCutData, MaxCutGenerator, build_maxcut_model_jump

View File

@@ -13,7 +13,7 @@ function __init_problems_setcover__()
copy!(SetCoverGenerator, pyimport("miplearn.problems.setcover").SetCoverGenerator)
end
function build_setcover_model_jump(data::Any; optimizer=HiGHS.Optimizer)
function build_setcover_model_jump(data::Any; optimizer = HiGHS.Optimizer)
if data isa String
data = read_pkl_gz(data)
end

View File

@@ -10,10 +10,13 @@ global MaxWeightStableSetGenerator = PyNULL()
function __init_problems_stab__()
copy!(MaxWeightStableSetData, pyimport("miplearn.problems.stab").MaxWeightStableSetData)
copy!(MaxWeightStableSetGenerator, pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator)
copy!(
MaxWeightStableSetGenerator,
pyimport("miplearn.problems.stab").MaxWeightStableSetGenerator,
)
end
function build_stab_model_jump(data::Any; optimizer=HiGHS.Optimizer)
function build_stab_model_jump(data::Any; optimizer = HiGHS.Optimizer)
nx = pyimport("networkx")
if data isa String
@@ -50,11 +53,7 @@ function build_stab_model_jump(data::Any; optimizer=HiGHS.Optimizer)
end
end
return JumpModel(
model,
cuts_separate=cuts_separate,
cuts_enforce=cuts_enforce,
)
return JumpModel(model, cuts_separate = cuts_separate, cuts_enforce = cuts_enforce)
end
export MaxWeightStableSetData, MaxWeightStableSetGenerator, build_stab_model_jump

View File

@@ -9,7 +9,10 @@ global TravelingSalesmanGenerator = PyNULL()
function __init_problems_tsp__()
copy!(TravelingSalesmanData, pyimport("miplearn.problems.tsp").TravelingSalesmanData)
copy!(TravelingSalesmanGenerator, pyimport("miplearn.problems.tsp").TravelingSalesmanGenerator)
copy!(
TravelingSalesmanGenerator,
pyimport("miplearn.problems.tsp").TravelingSalesmanGenerator,
)
end
function build_tsp_model_jump(data::Any; optimizer)
@@ -19,17 +22,15 @@ function build_tsp_model_jump(data::Any; optimizer)
data = read_pkl_gz(data)
end
model = Model(optimizer)
edges = [(i, j) for i in 1:data.n_cities for j in (i+1):data.n_cities]
edges = [(i, j) for i = 1:data.n_cities for j = (i+1):data.n_cities]
x = @variable(model, x[edges], Bin)
@objective(model, Min, sum(
x[(i, j)] * data.distances[i, j] for (i, j) in edges
))
@objective(model, Min, sum(x[(i, j)] * data.distances[i, j] for (i, j) in edges))
# Eq: Must choose two edges adjacent to each node
@constraint(
model,
eq_degree[i in 1:data.n_cities],
sum(x[(min(i, j), max(i, j))] for j in 1:data.n_cities if i != j) == 2
sum(x[(min(i, j), max(i, j))] for j = 1:data.n_cities if i != j) == 2
)
function lazy_separate(cb_data)
@@ -41,10 +42,8 @@ function build_tsp_model_jump(data::Any; optimizer)
for component in nx.connected_components(graph)
if length(component) < data.n_cities
cut_edges = [
[e[1], e[2]]
for e in edges
if (e[1] component && e[2] component)
||
[e[1], e[2]] for
e in edges if (e[1] component && e[2] component) ||
(e[1] component && e[2] component)
]
push!(violations, cut_edges)
@@ -63,9 +62,9 @@ function build_tsp_model_jump(data::Any; optimizer)
return JumpModel(
model,
lazy_enforce=lazy_enforce,
lazy_separate=lazy_separate,
lp_optimizer=optimizer,
lazy_enforce = lazy_enforce,
lazy_separate = lazy_separate,
lp_optimizer = optimizer,
)
end

View File

@@ -18,7 +18,7 @@ Base.@kwdef mutable struct _JumpModelExtData
cuts_separate::Union{Function,Nothing} = nothing
lazy_enforce::Union{Function,Nothing} = nothing
lazy_separate::Union{Function,Nothing} = nothing
lp_optimizer
lp_optimizer::Any
end
function JuMP.copy_extension_data(
@@ -26,9 +26,7 @@ function JuMP.copy_extension_data(
new_model::AbstractModel,
::AbstractModel,
)
new_model.ext[:miplearn] = _JumpModelExtData(
lp_optimizer=old_ext.lp_optimizer
)
new_model.ext[:miplearn] = _JumpModelExtData(lp_optimizer = old_ext.lp_optimizer)
end
# -----------------------------------------------------------------------------
@@ -91,14 +89,27 @@ function _extract_after_load_vars(model::JuMP.Model, h5)
for v in vars
]
types = [JuMP.is_binary(v) ? "B" : JuMP.is_integer(v) ? "I" : "C" for v in vars]
obj = objective_function(model, AffExpr)
obj_coeffs = [v keys(obj.terms) ? obj.terms[v] : 0.0 for v in vars]
# Linear obj terms
obj = objective_function(model, QuadExpr)
obj_coeffs_linear = [v keys(obj.aff.terms) ? obj.aff.terms[v] : 0.0 for v in vars]
# Quadratic obj terms
if length(obj.terms) > 0
nvars = length(vars)
obj_coeffs_quad = zeros(nvars, nvars)
for (pair, coeff) in obj.terms
obj_coeffs_quad[pair.a.index.value, pair.b.index.value] = coeff
end
h5.put_array("static_var_obj_coeffs_quad", obj_coeffs_quad)
end
h5.put_array("static_var_names", to_str_array(JuMP.name.(vars)))
h5.put_array("static_var_types", to_str_array(types))
h5.put_array("static_var_lower_bounds", lb)
h5.put_array("static_var_upper_bounds", ub)
h5.put_array("static_var_obj_coeffs", obj_coeffs)
h5.put_scalar("static_obj_offset", obj.constant)
h5.put_array("static_var_obj_coeffs", obj_coeffs_linear)
h5.put_scalar("static_obj_offset", obj.aff.constant)
end
function _extract_after_load_constrs(model::JuMP.Model, h5)
@@ -145,7 +156,7 @@ function _extract_after_load_constrs(model::JuMP.Model, h5)
end
end
if isempty(names)
error("no model constraints found; note that MIPLearn ignores unnamed constraints")
return
end
lhs = sparse(lhs_rows, lhs_cols, lhs_values, length(rhs), JuMP.num_variables(model))
h5.put_sparse("static_constr_lhs", lhs)
@@ -284,9 +295,11 @@ function _extract_after_mip(model::JuMP.Model, h5)
# Slacks
lhs = h5.get_sparse("static_constr_lhs")
rhs = h5.get_array("static_constr_rhs")
slacks = abs.(lhs * x - rhs)
h5.put_array("mip_constr_slacks", slacks)
if lhs !== nothing
rhs = h5.get_array("static_constr_rhs")
slacks = abs.(lhs * x - rhs)
h5.put_array("mip_constr_slacks", slacks)
end
# Cuts and lazy constraints
ext = model.ext[:miplearn]
@@ -297,7 +310,7 @@ end
function _fix_variables(model::JuMP.Model, var_names, var_values, stats)
vars = [variable_by_name(model, v) for v in var_names]
for (i, var) in enumerate(vars)
fix(var, var_values[i], force=true)
fix(var, var_values[i], force = true)
end
end
@@ -392,19 +405,19 @@ function __init_solvers_jump__()
function __init__(
self,
inner;
cuts_enforce::Union{Function,Nothing}=nothing,
cuts_separate::Union{Function,Nothing}=nothing,
lazy_enforce::Union{Function,Nothing}=nothing,
lazy_separate::Union{Function,Nothing}=nothing,
lp_optimizer=HiGHS.Optimizer,
cuts_enforce::Union{Function,Nothing} = nothing,
cuts_separate::Union{Function,Nothing} = nothing,
lazy_enforce::Union{Function,Nothing} = nothing,
lazy_separate::Union{Function,Nothing} = nothing,
lp_optimizer = HiGHS.Optimizer,
)
self.inner = inner
self.inner.ext[:miplearn] = _JumpModelExtData(
cuts_enforce=cuts_enforce,
cuts_separate=cuts_separate,
lazy_enforce=lazy_enforce,
lazy_separate=lazy_separate,
lp_optimizer=lp_optimizer,
cuts_enforce = cuts_enforce,
cuts_separate = cuts_separate,
lazy_enforce = lazy_enforce,
lazy_separate = lazy_separate,
lp_optimizer = lp_optimizer,
)
end
@@ -414,7 +427,7 @@ function __init_solvers_jump__()
constrs_lhs,
constrs_sense,
constrs_rhs,
stats=nothing,
stats = nothing,
) = _add_constrs(
self.inner,
from_str_array(var_names),
@@ -430,14 +443,14 @@ function __init_solvers_jump__()
extract_after_mip(self, h5) = _extract_after_mip(self.inner, h5)
fix_variables(self, var_names, var_values, stats=nothing) =
fix_variables(self, var_names, var_values, stats = nothing) =
_fix_variables(self.inner, from_str_array(var_names), var_values, stats)
optimize(self) = _optimize(self.inner)
relax(self) = Class(_relax(self.inner))
set_warm_starts(self, var_names, var_values, stats=nothing) =
set_warm_starts(self, var_names, var_values, stats = nothing) =
_set_warm_starts(self.inner, from_str_array(var_names), var_values, stats)
write(self, filename) = _write(self.inner, filename)

View File

@@ -17,6 +17,7 @@ MIPLearn = "2b1277c3-b477-4c49-a15e-7ba350325c68"
PyCall = "438e738f-606a-5dbb-bf0a-cddfbfd45ab0"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
SCIP = "82193955-e24f-5292-bf16-6f2c5261a85f"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[compat]

BIN
test/fixtures/bell5.h5 vendored

Binary file not shown.

BIN
test/fixtures/vpm2.h5 vendored

Binary file not shown.

View File

@@ -86,11 +86,7 @@ function bb_run(optimizer_name, optimizer; large = true)
BB.ReliabilityBranching(aggregation = :min, collect = true),
]
h5 = H5File("$FIXTURES/$instance.h5")
mip_lower_bound = h5.get_scalar("mip_lower_bound")
mip_upper_bound = h5.get_scalar("mip_upper_bound")
mip_sense = h5.get_scalar("mip_sense")
mip_primal_bound =
mip_sense == "min" ? mip_upper_bound : mip_lower_bound
mip_obj_bound = h5.get_scalar("mip_obj_bound")
h5.file.close()
mip = BB.init(optimizer)
@@ -98,7 +94,7 @@ function bb_run(optimizer_name, optimizer; large = true)
@info optimizer_name, branch_rule, instance
@time BB.solve!(
mip,
initial_primal_bound = mip_primal_bound,
initial_primal_bound = mip_obj_bound,
print_interval = 1,
node_limit = 25,
branch_rule = branch_rule,

View File

@@ -0,0 +1,23 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using HiGHS
function test_cuts_tableau_gmi()
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
collect_gmi(mps_filename, optimizer = HiGHS.Optimizer)
h5 = H5File(h5_filename, "r")
try
cuts_lb = h5.get_array("cuts_lb")
cuts_ub = h5.get_array("cuts_ub")
cuts_lhs = h5.get_sparse("cuts_lhs")
n_cuts = length(cuts_lb)
@test n_cuts > 0
@test n_cuts == length(cuts_ub)
@test cuts_lhs.shape[1] == n_cuts
finally
h5.close()
end
end

View File

@@ -0,0 +1,70 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using SCIP
using HiGHS
using MIPLearn.Cuts
function test_cuts_tableau_gmi_dual_collect()
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
stats = collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
h5 = H5File(h5_filename, "r")
try
cuts_basis_vars = h5.get_array("cuts_basis_vars")
cuts_basis_sizes = h5.get_array("cuts_basis_sizes")
cuts_rows = h5.get_array("cuts_rows")
@test size(cuts_basis_vars) == (15, 402)
@test size(cuts_basis_sizes) == (15, 4)
@test size(cuts_rows) == (15,)
finally
h5.close()
end
end
function test_cuts_tableau_gmi_dual_usage()
function build_model(mps_filename)
model = read_from_file(mps_filename)
set_optimizer(model, SCIP.Optimizer)
return JumpModel(model)
end
mps_filename = "$BASEDIR/../fixtures/bell5.mps.gz"
h5_filename = "$BASEDIR/../fixtures/bell5.h5"
rm(h5_filename, force=true)
# Run basic collector
bc = BasicCollector(write_mps = false, skip_lp = true)
bc.collect([mps_filename], build_model)
# Run dual GMI collector
@info "Running dual GMI collector..."
collect_gmi_dual(mps_filename, optimizer = HiGHS.Optimizer)
# # Test expert component
# solver = LearningSolver(
# components = [
# ExpertPrimalComponent(action = SetWarmStart()),
# ExpertDualGmiComponent(),
# ],
# skip_lp = true,
# )
# solver.optimize(mps_filename, build_model)
# Test kNN component
knn = KnnDualGmiComponent(
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"]),
k = 2,
)
knn.fit([h5_filename, h5_filename])
solver = LearningSolver(
components = [
ExpertPrimalComponent(action = SetWarmStart()),
knn,
],
skip_lp = true,
)
solver.optimize(mps_filename, build_model)
return
end

View File

@@ -19,9 +19,12 @@ include("BB/test_bb.jl")
include("components/test_cuts.jl")
include("components/test_lazy.jl")
include("Cuts/BlackBox/test_cplex.jl")
include("Cuts/tableau/test_gmi.jl")
include("Cuts/tableau/test_gmi_dual.jl")
include("problems/test_setcover.jl")
include("problems/test_stab.jl")
include("problems/test_tsp.jl")
include("problems/test_maxcut.jl")
include("solvers/test_jump.jl")
include("test_io.jl")
include("test_usage.jl")
@@ -35,6 +38,7 @@ function runtests()
test_problems_setcover()
test_problems_stab()
test_problems_tsp()
test_problems_maxcut()
test_solvers_jump()
test_usage()
test_cuts()
@@ -43,8 +47,8 @@ function runtests()
end
function format()
JuliaFormatter.format(BASEDIR, verbose=true)
JuliaFormatter.format("$BASEDIR/../../src", verbose=true)
JuliaFormatter.format(BASEDIR, verbose = true)
JuliaFormatter.format("$BASEDIR/../../src", verbose = true)
return
end

View File

@@ -10,34 +10,32 @@ function gen_stab()
randint = pyimport("scipy.stats").randint
np.random.seed(42)
gen = MaxWeightStableSetGenerator(
w=uniform(10.0, scale=1.0),
n=randint(low=50, high=51),
p=uniform(loc=0.5, scale=0.0),
fix_graph=true,
w = uniform(10.0, scale = 1.0),
n = randint(low = 50, high = 51),
p = uniform(loc = 0.5, scale = 0.0),
fix_graph = true,
)
data = gen.generate(1)
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="stab-n50-")
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "stab-n50-")
collector = BasicCollector()
collector.collect(
data_filenames,
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
progress=true,
verbose=true,
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
progress = true,
verbose = true,
)
end
function test_cuts()
data_filenames = ["$BASEDIR/../fixtures/stab-n50-00000.pkl.gz"]
clf = pyimport("sklearn.dummy").DummyClassifier()
extractor = H5FieldsExtractor(
instance_fields=["static_var_obj_coeffs"],
)
comp = MemorizingCutsComponent(clf=clf, extractor=extractor)
solver = LearningSolver(components=[comp])
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
comp = MemorizingCutsComponent(clf = clf, extractor = extractor)
solver = LearningSolver(components = [comp])
solver.fit(data_filenames)
stats = solver.optimize(
model, stats = solver.optimize(
data_filenames[1],
data -> build_stab_model_jump(data, optimizer=SCIP.Optimizer),
data -> build_stab_model_jump(data, optimizer = SCIP.Optimizer),
)
@test stats["Cuts: AOT"] > 0
end

View File

@@ -11,36 +11,34 @@ function gen_tsp()
np.random.seed(42)
gen = TravelingSalesmanGenerator(
x=uniform(loc=0.0, scale=1000.0),
y=uniform(loc=0.0, scale=1000.0),
n=randint(low=20, high=21),
gamma=uniform(loc=1.0, scale=0.25),
fix_cities=true,
round=true,
x = uniform(loc = 0.0, scale = 1000.0),
y = uniform(loc = 0.0, scale = 1000.0),
n = randint(low = 20, high = 21),
gamma = uniform(loc = 1.0, scale = 0.25),
fix_cities = true,
round = true,
)
data = gen.generate(1)
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix="tsp-n20-")
data_filenames = write_pkl_gz(data, "$BASEDIR/../fixtures", prefix = "tsp-n20-")
collector = BasicCollector()
collector.collect(
data_filenames,
data -> build_tsp_model_jump(data, optimizer=GLPK.Optimizer),
progress=true,
verbose=true,
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
progress = true,
verbose = true,
)
end
function test_lazy()
data_filenames = ["$BASEDIR/../fixtures/tsp-n20-00000.pkl.gz"]
clf = pyimport("sklearn.dummy").DummyClassifier()
extractor = H5FieldsExtractor(
instance_fields=["static_var_obj_coeffs"],
)
comp = MemorizingLazyComponent(clf=clf, extractor=extractor)
solver = LearningSolver(components=[comp])
extractor = H5FieldsExtractor(instance_fields = ["static_var_obj_coeffs"])
comp = MemorizingLazyComponent(clf = clf, extractor = extractor)
solver = LearningSolver(components = [comp])
solver.fit(data_filenames)
stats = solver.optimize(
model, stats = solver.optimize(
data_filenames[1],
data -> build_tsp_model_jump(data, optimizer=GLPK.Optimizer),
data -> build_tsp_model_jump(data, optimizer = GLPK.Optimizer),
)
@test stats["Lazy Constraints: AOT"] > 0
end

View File

@@ -0,0 +1,54 @@
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using PyCall
function test_problems_maxcut()
np = pyimport("numpy")
random = pyimport("random")
scipy_stats = pyimport("scipy.stats")
randint = scipy_stats.randint
uniform = scipy_stats.uniform
# Set random seed
random.seed(42)
np.random.seed(42)
# Build random instance
data = MaxCutGenerator(
n = randint(low = 10, high = 11),
p = uniform(loc = 0.5, scale = 0.0),
fix_graph = false,
).generate(
1,
)[1]
# Build model
model = build_maxcut_model_jump(data, optimizer = SCIP.Optimizer)
# Check static features
h5 = H5File(tempname(), "w")
model.extract_after_load(h5)
obj_linear = h5.get_array("static_var_obj_coeffs")
obj_quad = h5.get_array("static_var_obj_coeffs_quad")
@test obj_linear == [3.0, 1.0, 3.0, 1.0, -1.0, 0.0, -1.0, 0.0, -1.0, 0.0]
@test obj_quad == [
0.0 0.0 -1.0 1.0 -1.0 0.0 0.0 0.0 -1.0 -1.0
0.0 0.0 1.0 -1.0 0.0 -1.0 -1.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 -1.0 -1.0
0.0 0.0 0.0 0.0 0.0 -1.0 1.0 -1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
]
# Check optimal solution
model.optimize()
model.extract_after_mip(h5)
@test h5.get_scalar("mip_obj_value") == -4
h5.close()
end

View File

@@ -8,11 +8,11 @@ using SCIP
function test_problems_stab()
nx = pyimport("networkx")
data = MaxWeightStableSetData(
graph=nx.gnp_random_graph(25, 0.5, seed=42),
weights=repeat([1.0], 25),
graph = nx.gnp_random_graph(25, 0.5, seed = 42),
weights = repeat([1.0], 25),
)
h5 = H5File(tempname(), "w")
model = build_stab_model_jump(data, optimizer=SCIP.Optimizer)
model = build_stab_model_jump(data, optimizer = SCIP.Optimizer)
model.extract_after_load(h5)
model.optimize()
model.extract_after_mip(h5)

View File

@@ -10,17 +10,12 @@ function test_problems_tsp()
squareform = pyimport("scipy.spatial.distance").squareform
data = TravelingSalesmanData(
n_cities=6,
distances=squareform(pdist([
[0.0, 0.0],
[1.0, 0.0],
[2.0, 0.0],
[3.0, 0.0],
[0.0, 1.0],
[3.0, 1.0],
])),
n_cities = 6,
distances = squareform(
pdist([[0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [3.0, 0.0], [0.0, 1.0], [3.0, 1.0]]),
),
)
model = build_tsp_model_jump(data, optimizer=GLPK.Optimizer)
model = build_tsp_model_jump(data, optimizer = GLPK.Optimizer)
model.optimize()
@test objective_value(model.inner) == 8.0
return

View File

@@ -4,6 +4,7 @@
using MIPLearn
using JLD2
using SparseArrays
struct _TestStruct
n::Int
@@ -35,6 +36,8 @@ function test_h5()
_test_roundtrip_array(h5, [1, 2, 3])
_test_roundtrip_array(h5, [1.0, 2.0, 3.0])
_test_roundtrip_str_array(h5, ["A", "BB", "CCC"])
_test_roundtrip_sparse(h5, sparse([1; 2; 3], [1; 2; 3], [1; 2; 3]))
# _test_roundtrip_sparse(h5, sparse([1; 2; 3], [1; 2; 3], [1; 2; 3], 4, 4))
@test h5.get_array("unknown-key") === nothing
h5.close()
end
@@ -46,7 +49,7 @@ function test_jld2()
_TestStruct(2, [1.0, 2.0, 3.0]),
_TestStruct(3, [3.0, 3.0, 3.0]),
]
filenames = write_jld2(data, dirname, prefix="obj")
filenames = write_jld2(data, dirname, prefix = "obj")
@test all(
filenames .==
["$dirname/obj00001.jld2", "$dirname/obj00002.jld2", "$dirname/obj00003.jld2"],
@@ -79,3 +82,11 @@ function _test_roundtrip_str_array(h5, original)
@test recovered !== nothing
@test all(original .== recovered)
end
function _test_roundtrip_sparse(h5, original)
h5.put_sparse("key", original)
recovered = MIPLearn.convert(SparseMatrixCSC, h5.get_sparse("key"))
@test recovered !== nothing
@test size(original) == size(recovered)
@test all(original .== recovered)
end

View File

@@ -13,16 +13,16 @@ function test_usage()
@debug "Setting up LearningSolver..."
solver = LearningSolver(
components=[
components = [
IndependentVarsPrimalComponent(
base_clf=SingleClassFix(
base_clf = SingleClassFix(
MinProbabilityClassifier(
base_clf=LogisticRegression(),
thresholds=[0.95, 0.95],
base_clf = LogisticRegression(),
thresholds = [0.95, 0.95],
),
),
extractor=AlvLouWeh2017Extractor(),
action=SetWarmStart(),
extractor = AlvLouWeh2017Extractor(),
action = SetWarmStart(),
),
],
)