# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. using JuMP using MIPLearn using Cbc @testset "FileInstance" begin @testset "solve" begin model = build_knapsack_model() instance = JuMPInstance(model) filename = tempname() save(filename, instance) h5 = MIPLearn.Hdf5Sample(filename) @test h5.get_scalar("miplearn_version") == "0002" @test length(h5.get_bytes("mps")) > 0 @test length(h5.get_scalar("jump_ext")) > 0 file_instance = FileInstance(filename) solver = LearningSolver(Cbc.Optimizer) solve!(solver, file_instance) @test length(h5.get_array("mip_var_values")) == 3 end end