# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. using JuMP using MIPLearn function build_knapsack_model() # Create standard JuMP model weights = [1.0, 2.0, 3.0] prices = [5.0, 6.0, 7.0] capacity = 3.0 model = Model() n = length(weights) @variable(model, x[1:n], Bin) @objective(model, Max, sum(x[i] * prices[i] for i in 1:n)) @constraint(model, c1, sum(x[i] * weights[i] for i in 1:n) <= capacity) # Add ML information to the model @feature(model, [5.0]) @feature(c1, [1.0, 2.0, 3.0]) @category(c1, "c1") for i in 1:n @feature(x[i], [weights[i]; prices[i]]) @category(x[i], "type-$i") end # Should store ML information @test model.ext[:miplearn][:variable_features]["x[1]"] == [1.0, 5.0] @test model.ext[:miplearn][:variable_features]["x[2]"] == [2.0, 6.0] @test model.ext[:miplearn][:variable_features]["x[3]"] == [3.0, 7.0] @test model.ext[:miplearn][:variable_categories]["x[1]"] == "type-1" @test model.ext[:miplearn][:variable_categories]["x[2]"] == "type-2" @test model.ext[:miplearn][:variable_categories]["x[3]"] == "type-3" @test model.ext[:miplearn][:constraint_features]["c1"] == [1.0, 2.0, 3.0] @test model.ext[:miplearn][:constraint_categories]["c1"] == "c1" @test model.ext[:miplearn][:instance_features] == [5.0] return model end function build_knapsack_file_instance() model = build_knapsack_model() instance = JuMPInstance(model) filename = tempname() save(filename, instance) return FileInstance(filename) end