# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. using PyCall using SCIP function test_problems_stab() test_problems_stab_1() test_problems_stab_2() end function test_problems_stab_1() nx = pyimport("networkx") data = MaxWeightStableSetData( graph=nx.gnp_random_graph(25, 0.5, seed=42), weights=repeat([1.0], 25), ) h5 = H5File(tempname(), "w") model = build_stab_model_jump(data, optimizer=SCIP.Optimizer) model.extract_after_load(h5) model.optimize() model.extract_after_mip(h5) @test h5.get_scalar("mip_obj_value") == -6 @test h5.get_scalar("mip_cuts")[1:20] == "[[0,8,11,13],[0,8,13" h5.close() end