# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. using JuMP using MIPLearn Base.@kwdef struct KnapsackData weights = [1.0, 2.0, 3.0] prices = [5.0, 6.0, 7.0] capacity = 3.0 end function build_knapsack_model(data = KnapsackData()) model = Model() n = length(data.weights) @variable(model, x[1:n], Bin) @objective(model, Max, sum(x[i] * data.prices[i] for i = 1:n)) @constraint(model, c1, sum(x[i] * data.weights[i] for i = 1:n) <= data.capacity) # # Add ML information to the model # @feature(model, [5.0]) # @feature(c1, [1.0, 2.0, 3.0]) # @category(c1, "c1") # for i = 1:n # @feature(x[i], [weights[i]; prices[i]]) # @category(x[i], "type-$i") # end # # Should store ML information # @test model.ext[:miplearn]["variable_features"]["x[1]"] == [1.0, 5.0] # @test model.ext[:miplearn]["variable_features"]["x[2]"] == [2.0, 6.0] # @test model.ext[:miplearn]["variable_features"]["x[3]"] == [3.0, 7.0] # @test model.ext[:miplearn]["variable_categories"]["x[1]"] == "type-1" # @test model.ext[:miplearn]["variable_categories"]["x[2]"] == "type-2" # @test model.ext[:miplearn]["variable_categories"]["x[3]"] == "type-3" # @test model.ext[:miplearn]["constraint_features"]["c1"] == [1.0, 2.0, 3.0] # @test model.ext[:miplearn]["constraint_categories"]["c1"] == "c1" # @test model.ext[:miplearn]["instance_features"] == [5.0] return model end function build_knapsack_file_instance() data = KnapsackData() filename = tempname() MIPLearn.save_data(filename, data) return FileInstance(filename, build_knapsack_model) end