# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. using JuMP using MIPLearn using Cbc @testset "macros" begin weights = [1.0, 2.0, 3.0] prices = [5.0, 6.0, 7.0] capacity = 3.0 # Create standard JuMP model model = Model() n = length(weights) @variable(model, x[1:n], Bin) @objective(model, Max, sum(x[i] * prices[i] for i in 1:n)) @constraint(model, c1, sum(x[i] * weights[i] for i in 1:n) <= capacity) # Add ML information to the model @feature(model, [5.0]) @feature(c1, [1.0, 2.0, 3.0]) @category(c1, "c1") for i in 1:n @feature(x[i], [weights[i]; prices[i]]) @category(x[i], "type-$i") end # Should store ML information @test model.ext[:miplearn][:variable_features][x[1]] == [1.0, 5.0] @test model.ext[:miplearn][:variable_features][x[2]] == [2.0, 6.0] @test model.ext[:miplearn][:variable_features][x[3]] == [3.0, 7.0] @test model.ext[:miplearn][:variable_categories][x[1]] == "type-1" @test model.ext[:miplearn][:variable_categories][x[2]] == "type-2" @test model.ext[:miplearn][:variable_categories][x[3]] == "type-3" @test model.ext[:miplearn][:constraint_features][c1] == [1.0, 2.0, 3.0] @test model.ext[:miplearn][:constraint_categories][c1] == "c1" @test model.ext[:miplearn][:instance_features] == [5.0] # solver = LearningSolver(optimizer=Cbc.Optimizer) # # Should return correct stats # stats = solve!(solver, model) # @test stats["Lower bound"] == 11.0 # # Should add a sample to the training data # @test length(model.ext[:miplearn][:training_samples]) == 1 # sample = model.ext[:miplearn][:training_samples][1] # @test sample["lower_bound"] == 11.0 # @test sample["solution"]["x[1]"] == 1.0 # fit!(solver, [model]) # solve!(solver, model) end