You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
708 lines
21 KiB
708 lines
21 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
using Cbc
|
|
using Clp
|
|
using JuMP
|
|
using MathOptInterface
|
|
using TimerOutputs
|
|
const MOI = MathOptInterface
|
|
|
|
import JuMP: value
|
|
|
|
mutable struct JuMPSolverData
|
|
optimizer_factory::Any
|
|
varname_to_var::Dict{String,VariableRef}
|
|
cname_to_constr::Dict{String,JuMP.ConstraintRef}
|
|
instance::Union{Nothing,PyObject}
|
|
model::Union{Nothing,JuMP.Model}
|
|
bin_vars::Vector{JuMP.VariableRef}
|
|
solution::Dict{JuMP.VariableRef,Float64}
|
|
reduced_costs::Vector{Float64}
|
|
dual_values::Dict{JuMP.ConstraintRef,Float64}
|
|
sensitivity_report::Any
|
|
cb_data::Any
|
|
var_lb_constr::Dict{MOI.VariableIndex,ConstraintRef}
|
|
var_ub_constr::Dict{MOI.VariableIndex,ConstraintRef}
|
|
basis_status::Dict{ConstraintRef,MOI.BasisStatusCode}
|
|
end
|
|
|
|
|
|
"""
|
|
_optimize_and_capture_output!(model; tee=tee)
|
|
|
|
Optimizes a given JuMP model while capturing the solver log, then returns that log.
|
|
If tee=true, prints the solver log to the standard output as the optimization takes place.
|
|
"""
|
|
function _optimize_and_capture_output!(model; tee::Bool = false)
|
|
logname = tempname()
|
|
logfile = open(logname, "w")
|
|
redirect_stdout(logfile) do
|
|
JuMP.optimize!(model)
|
|
Base.Libc.flush_cstdio()
|
|
end
|
|
close(logfile)
|
|
log = String(read(logname))
|
|
rm(logname)
|
|
if tee
|
|
println(log)
|
|
flush(stdout)
|
|
Base.Libc.flush_cstdio()
|
|
end
|
|
return log
|
|
end
|
|
|
|
|
|
function _update_solution!(data::JuMPSolverData)
|
|
vars = JuMP.all_variables(data.model)
|
|
data.solution = Dict(var => JuMP.value(var) for var in vars)
|
|
|
|
if has_duals(data.model)
|
|
data.reduced_costs = []
|
|
data.basis_status = Dict()
|
|
|
|
for var in vars
|
|
rc = 0.0
|
|
if has_upper_bound(var)
|
|
rc += shadow_price(UpperBoundRef(var))
|
|
end
|
|
if has_lower_bound(var)
|
|
# FIXME: Remove negative sign
|
|
rc -= shadow_price(LowerBoundRef(var))
|
|
end
|
|
if is_fixed(var)
|
|
rc += shadow_price(FixRef(var))
|
|
end
|
|
push!(data.reduced_costs, rc)
|
|
end
|
|
|
|
try
|
|
data.sensitivity_report = lp_sensitivity_report(data.model)
|
|
catch
|
|
# solver does not support sensitivity analysis; ignore
|
|
end
|
|
|
|
data.dual_values = Dict()
|
|
for (ftype, stype) in JuMP.list_of_constraint_types(data.model)
|
|
for constr in JuMP.all_constraints(data.model, ftype, stype)
|
|
# Dual values (FIXME: Remove negative sign)
|
|
data.dual_values[constr] = -JuMP.dual(constr)
|
|
|
|
# Basis status
|
|
if data.sensitivity_report !== nothing
|
|
data.basis_status[constr] =
|
|
MOI.get(data.model, MOI.ConstraintBasisStatus(), constr)
|
|
end
|
|
|
|
# Build map between variables and bound constraints
|
|
if ftype == VariableRef
|
|
var = MOI.get(data.model, MOI.ConstraintFunction(), constr).variable
|
|
if stype == MOI.GreaterThan{Float64}
|
|
data.var_lb_constr[var] = constr
|
|
elseif stype == MOI.LessThan{Float64}
|
|
data.var_ub_constr[var] = constr
|
|
else
|
|
error("Unsupported constraint: $(ftype)-in-$(stype)")
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
else
|
|
data.reduced_costs = []
|
|
data.dual_values = Dict()
|
|
data.sensitivity_report = nothing
|
|
data.basis_status = Dict()
|
|
data.var_lb_constr = Dict()
|
|
data.var_ub_constr = Dict()
|
|
end
|
|
end
|
|
|
|
|
|
function add_constraints(
|
|
data::JuMPSolverData;
|
|
lhs::Vector{Vector{Tuple{String,Float64}}},
|
|
rhs::Vector{Float64},
|
|
senses::Vector{String},
|
|
names::Vector{String},
|
|
)::Nothing
|
|
for (i, sense) in enumerate(senses)
|
|
lhs_expr = AffExpr(0.0)
|
|
for (varname, coeff) in lhs[i]
|
|
var = data.varname_to_var[varname]
|
|
add_to_expression!(lhs_expr, var, coeff)
|
|
end
|
|
if sense == "<"
|
|
constr = @constraint(data.model, lhs_expr <= rhs[i])
|
|
elseif sense == ">"
|
|
constr = @constraint(data.model, lhs_expr >= rhs[i])
|
|
elseif sense == "="
|
|
constr = @constraint(data.model, lhs_expr == rhs[i])
|
|
else
|
|
error("unknown sense: $(sense)")
|
|
end
|
|
set_name(constr, names[i])
|
|
data.cname_to_constr[names[i]] = constr
|
|
end
|
|
return
|
|
end
|
|
|
|
|
|
function are_constraints_satisfied(
|
|
data::JuMPSolverData;
|
|
lhs::Vector{Vector{Tuple{String,Float64}}},
|
|
rhs::Vector{Float64},
|
|
senses::Vector{String},
|
|
tol::Float64 = 1e-5,
|
|
)::Vector{Bool}
|
|
result = []
|
|
for (i, sense) in enumerate(senses)
|
|
lhs_value = 0.0
|
|
for (varname, coeff) in lhs[i]
|
|
var = data.varname_to_var[varname]
|
|
lhs_value += data.solution[var] * coeff
|
|
end
|
|
if sense == "<"
|
|
push!(result, lhs_value <= rhs[i] + tol)
|
|
elseif sense == ">"
|
|
push!(result, lhs_value >= rhs[i] - tol)
|
|
elseif sense == "="
|
|
push!(result, abs(lhs_value - rhs[i]) <= tol)
|
|
else
|
|
error("unknown sense: $(sense)")
|
|
end
|
|
end
|
|
return result
|
|
end
|
|
|
|
|
|
function build_test_instance_knapsack()
|
|
weights = [23.0, 26.0, 20.0, 18.0]
|
|
prices = [505.0, 352.0, 458.0, 220.0]
|
|
capacity = 67.0
|
|
|
|
model = Model()
|
|
n = length(weights)
|
|
@variable(model, x[0:n-1], Bin)
|
|
@variable(model, z, lower_bound = 0.0, upper_bound = capacity)
|
|
@objective(model, Max, sum(x[i-1] * prices[i] for i = 1:n))
|
|
@constraint(model, eq_capacity, sum(x[i-1] * weights[i] for i = 1:n) - z == 0)
|
|
|
|
return JuMPInstance(model).py
|
|
end
|
|
|
|
|
|
function build_test_instance_infeasible()
|
|
model = Model()
|
|
@variable(model, x, Bin)
|
|
@objective(model, Max, x)
|
|
@constraint(model, x >= 2)
|
|
return JuMPInstance(model).py
|
|
end
|
|
|
|
|
|
function remove_constraints(data::JuMPSolverData, names::Vector{String})::Nothing
|
|
for name in names
|
|
constr = data.cname_to_constr[name]
|
|
delete(data.model, constr)
|
|
delete!(data.cname_to_constr, name)
|
|
end
|
|
return
|
|
end
|
|
|
|
|
|
function solve(
|
|
data::JuMPSolverData;
|
|
tee::Bool = false,
|
|
iteration_cb = nothing,
|
|
lazy_cb = nothing,
|
|
)
|
|
model = data.model
|
|
wallclock_time = 0
|
|
log = ""
|
|
|
|
if lazy_cb !== nothing
|
|
function lazy_cb_wrapper(cb_data)
|
|
data.cb_data = cb_data
|
|
lazy_cb(nothing, nothing)
|
|
data.cb_data = nothing
|
|
end
|
|
MOI.set(model, MOI.LazyConstraintCallback(), lazy_cb_wrapper)
|
|
end
|
|
|
|
while true
|
|
wallclock_time += @elapsed begin
|
|
log *= _optimize_and_capture_output!(model, tee = tee)
|
|
end
|
|
if iteration_cb !== nothing
|
|
iteration_cb() || break
|
|
else
|
|
break
|
|
end
|
|
end
|
|
|
|
if is_infeasible(data)
|
|
data.solution = Dict()
|
|
primal_bound = nothing
|
|
dual_bound = nothing
|
|
else
|
|
_update_solution!(data)
|
|
primal_bound = JuMP.objective_value(model)
|
|
dual_bound = JuMP.objective_bound(model)
|
|
end
|
|
if JuMP.objective_sense(model) == MOI.MIN_SENSE
|
|
sense = "min"
|
|
lower_bound = dual_bound
|
|
upper_bound = primal_bound
|
|
else
|
|
sense = "max"
|
|
lower_bound = primal_bound
|
|
upper_bound = dual_bound
|
|
end
|
|
return miplearn.solvers.internal.MIPSolveStats(
|
|
mip_lower_bound = lower_bound,
|
|
mip_upper_bound = upper_bound,
|
|
mip_sense = sense,
|
|
mip_wallclock_time = wallclock_time,
|
|
mip_nodes = 1,
|
|
mip_log = log,
|
|
mip_warm_start_value = nothing,
|
|
)
|
|
end
|
|
|
|
|
|
function solve_lp(data::JuMPSolverData; tee::Bool = false)
|
|
model, bin_vars = data.model, data.bin_vars
|
|
for var in bin_vars
|
|
~is_fixed(var) || continue
|
|
unset_binary(var)
|
|
set_upper_bound(var, 1.0)
|
|
set_lower_bound(var, 0.0)
|
|
end
|
|
# If the optimizer is Cbc, we need to replace it by Clp,
|
|
# otherwise dual values are not available.
|
|
# https://github.com/jump-dev/Cbc.jl/issues/50
|
|
is_cbc = (data.optimizer_factory == Cbc.Optimizer)
|
|
if is_cbc
|
|
set_optimizer(model, Clp.Optimizer)
|
|
end
|
|
wallclock_time = @elapsed begin
|
|
log = _optimize_and_capture_output!(model, tee = tee)
|
|
end
|
|
if is_infeasible(data)
|
|
data.solution = Dict()
|
|
obj_value = nothing
|
|
else
|
|
_update_solution!(data)
|
|
obj_value = objective_value(model)
|
|
end
|
|
if is_cbc
|
|
set_optimizer(model, data.optimizer_factory)
|
|
end
|
|
for var in bin_vars
|
|
~is_fixed(var) || continue
|
|
set_binary(var)
|
|
end
|
|
return miplearn.solvers.internal.LPSolveStats(
|
|
lp_value = obj_value,
|
|
lp_log = log,
|
|
lp_wallclock_time = wallclock_time,
|
|
)
|
|
end
|
|
|
|
|
|
function set_instance!(
|
|
data::JuMPSolverData,
|
|
instance;
|
|
model::Union{Nothing,JuMP.Model},
|
|
)::Nothing
|
|
data.instance = instance
|
|
if model === nothing
|
|
model = instance.to_model()
|
|
end
|
|
data.model = model
|
|
data.bin_vars = [var for var in JuMP.all_variables(model) if JuMP.is_binary(var)]
|
|
data.varname_to_var = Dict(JuMP.name(var) => var for var in JuMP.all_variables(model))
|
|
JuMP.set_optimizer(model, data.optimizer_factory)
|
|
data.cname_to_constr = Dict()
|
|
for (ftype, stype) in JuMP.list_of_constraint_types(model)
|
|
for constr in JuMP.all_constraints(model, ftype, stype)
|
|
name = JuMP.name(constr)
|
|
length(name) > 0 || continue
|
|
data.cname_to_constr[name] = constr
|
|
end
|
|
end
|
|
return
|
|
end
|
|
|
|
|
|
function fix!(data::JuMPSolverData, solution)
|
|
for (varname, value) in solution
|
|
value !== nothing || continue
|
|
var = data.varname_to_var[varname]
|
|
JuMP.fix(var, value, force = true)
|
|
end
|
|
end
|
|
|
|
|
|
function set_warm_start!(data::JuMPSolverData, solution)
|
|
for (varname, value) in solution
|
|
value !== nothing || continue
|
|
var = data.varname_to_var[varname]
|
|
JuMP.set_start_value(var, value)
|
|
end
|
|
end
|
|
|
|
|
|
function is_infeasible(data::JuMPSolverData)
|
|
return JuMP.termination_status(data.model) in
|
|
[MOI.INFEASIBLE, MOI.INFEASIBLE_OR_UNBOUNDED]
|
|
end
|
|
|
|
|
|
function get_variables(data::JuMPSolverData; with_static::Bool)
|
|
vars = JuMP.all_variables(data.model)
|
|
lb, ub, types = nothing, nothing, nothing
|
|
sa_obj_down, sa_obj_up = nothing, nothing
|
|
sa_lb_down, sa_lb_up = nothing, nothing
|
|
sa_ub_down, sa_ub_up = nothing, nothing
|
|
basis_status = nothing
|
|
values, rc = nothing, nothing
|
|
|
|
# Variable names
|
|
names = JuMP.name.(vars)
|
|
|
|
# Primal values
|
|
if !isempty(data.solution)
|
|
values = [data.solution[v] for v in vars]
|
|
end
|
|
|
|
# Objective function coefficients
|
|
obj = objective_function(data.model)
|
|
obj_coeffs = [v ∈ keys(obj.terms) ? obj.terms[v] : 0.0 for v in vars]
|
|
|
|
if with_static
|
|
# Lower bounds
|
|
lb = [
|
|
JuMP.is_binary(v) ? 0.0 : JuMP.has_lower_bound(v) ? JuMP.lower_bound(v) : -Inf for v in vars
|
|
]
|
|
|
|
# Upper bounds
|
|
ub = [
|
|
JuMP.is_binary(v) ? 1.0 : JuMP.has_upper_bound(v) ? JuMP.upper_bound(v) : Inf for v in vars
|
|
]
|
|
|
|
# Variable types
|
|
types = [JuMP.is_binary(v) ? "B" : JuMP.is_integer(v) ? "I" : "C" for v in vars]
|
|
end
|
|
|
|
# Sensitivity analysis and basis status
|
|
if data.sensitivity_report !== nothing
|
|
sa_obj_down, sa_obj_up = Float64[], Float64[]
|
|
sa_lb_down, sa_lb_up = Float64[], Float64[]
|
|
sa_ub_down, sa_ub_up = Float64[], Float64[]
|
|
basis_status = []
|
|
|
|
for (i, v) in enumerate(vars)
|
|
basis_status_v = "B"
|
|
|
|
# Objective function
|
|
(delta_down, delta_up) = data.sensitivity_report[v]
|
|
push!(sa_obj_down, delta_down + obj_coeffs[i])
|
|
push!(sa_obj_up, delta_up + obj_coeffs[i])
|
|
|
|
# Lower bound
|
|
if v.index in keys(data.var_lb_constr)
|
|
constr = data.var_lb_constr[v.index]
|
|
(delta_down, delta_up) = data.sensitivity_report[constr]
|
|
push!(sa_lb_down, lower_bound(v) + delta_down)
|
|
push!(sa_lb_up, lower_bound(v) + delta_up)
|
|
if data.basis_status[constr] == MOI.NONBASIC
|
|
basis_status_v = "L"
|
|
end
|
|
else
|
|
push!(sa_lb_down, -Inf)
|
|
push!(sa_lb_up, -Inf)
|
|
end
|
|
|
|
# Upper bound
|
|
if v.index in keys(data.var_ub_constr)
|
|
constr = data.var_ub_constr[v.index]
|
|
(delta_down, delta_up) = data.sensitivity_report[constr]
|
|
push!(sa_ub_down, upper_bound(v) + delta_down)
|
|
push!(sa_ub_up, upper_bound(v) + delta_up)
|
|
if data.basis_status[constr] == MOI.NONBASIC
|
|
basis_status_v = "U"
|
|
end
|
|
else
|
|
push!(sa_ub_down, Inf)
|
|
push!(sa_ub_up, Inf)
|
|
end
|
|
|
|
push!(basis_status, basis_status_v)
|
|
end
|
|
end
|
|
|
|
rc = isempty(data.reduced_costs) ? nothing : data.reduced_costs
|
|
|
|
vf = miplearn.solvers.internal.Variables(
|
|
names = to_str_array(names),
|
|
lower_bounds = lb,
|
|
upper_bounds = ub,
|
|
types = to_str_array(types),
|
|
obj_coeffs = with_static ? obj_coeffs : nothing,
|
|
reduced_costs = rc,
|
|
values = values,
|
|
sa_obj_down = sa_obj_down,
|
|
sa_obj_up = sa_obj_up,
|
|
sa_lb_down = sa_lb_down,
|
|
sa_lb_up = sa_lb_up,
|
|
sa_ub_down = sa_ub_down,
|
|
sa_ub_up = sa_ub_up,
|
|
basis_status = to_str_array(basis_status),
|
|
)
|
|
return vf
|
|
end
|
|
|
|
|
|
function get_constraints(
|
|
data::JuMPSolverData;
|
|
with_static::Bool,
|
|
with_sa::Bool,
|
|
with_lhs::Bool,
|
|
)
|
|
names = String[]
|
|
senses, lhs, rhs = nothing, nothing, nothing
|
|
dual_values = nothing
|
|
|
|
if !isempty(data.dual_values)
|
|
dual_values = Float64[]
|
|
end
|
|
|
|
if with_static
|
|
senses, lhs, rhs = String[], [], Float64[]
|
|
end
|
|
|
|
for (ftype, stype) in JuMP.list_of_constraint_types(data.model)
|
|
ftype in [JuMP.AffExpr, JuMP.VariableRef] ||
|
|
error("Unsupported constraint type: ($ftype, $stype)")
|
|
for constr in JuMP.all_constraints(data.model, ftype, stype)
|
|
cset = MOI.get(constr.model.moi_backend, MOI.ConstraintSet(), constr.index)
|
|
name = JuMP.name(constr)
|
|
length(name) > 0 || continue
|
|
push!(names, name)
|
|
|
|
if !isempty(data.dual_values)
|
|
push!(dual_values, data.dual_values[constr])
|
|
end
|
|
|
|
if with_static
|
|
if ftype == JuMP.AffExpr
|
|
if with_lhs
|
|
push!(
|
|
lhs,
|
|
[
|
|
(
|
|
pybytes(
|
|
MOI.get(
|
|
constr.model.moi_backend,
|
|
MOI.VariableName(),
|
|
term.variable_index,
|
|
),
|
|
),
|
|
term.coefficient,
|
|
) for term in
|
|
MOI.get(
|
|
constr.model.moi_backend,
|
|
MOI.ConstraintFunction(),
|
|
constr.index,
|
|
).terms
|
|
],
|
|
)
|
|
end
|
|
if stype == MOI.EqualTo{Float64}
|
|
push!(senses, "=")
|
|
push!(rhs, cset.value)
|
|
elseif stype == MOI.LessThan{Float64}
|
|
push!(senses, "<")
|
|
push!(rhs, cset.upper)
|
|
elseif stype == MOI.GreaterThan{Float64}
|
|
push!(senses, ">")
|
|
push!(rhs, cset.lower)
|
|
else
|
|
error("Unsupported set: $stype")
|
|
end
|
|
else
|
|
error("Unsupported ftype: $ftype")
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
return miplearn.solvers.internal.Constraints(
|
|
names = to_str_array(names),
|
|
senses = to_str_array(senses),
|
|
lhs = lhs,
|
|
rhs = rhs,
|
|
dual_values = dual_values,
|
|
)
|
|
end
|
|
|
|
|
|
function __init_JuMPSolver__()
|
|
@pydef mutable struct Class <: miplearn.solvers.internal.InternalSolver
|
|
function __init__(self, optimizer_factory)
|
|
self.data = JuMPSolverData(
|
|
optimizer_factory,
|
|
Dict(), # varname_to_var
|
|
Dict(), # cname_to_constr
|
|
nothing, # instance
|
|
nothing, # model
|
|
[], # bin_vars
|
|
Dict(), # solution
|
|
[], # reduced_costs
|
|
Dict(), # dual_values
|
|
nothing, # sensitivity_report
|
|
nothing, # cb_data
|
|
Dict(), # var_lb_constr
|
|
Dict(), # var_ub_constr
|
|
Dict(), # basis_status
|
|
)
|
|
end
|
|
|
|
function add_constraints(self, cf)
|
|
lhs = cf.lhs
|
|
if lhs isa Matrix
|
|
# Undo incorrect automatic conversion performed by PyCall
|
|
lhs = [col[:] for col in eachcol(lhs)]
|
|
end
|
|
add_constraints(
|
|
self.data,
|
|
lhs = lhs,
|
|
rhs = cf.rhs,
|
|
senses = from_str_array(cf.senses),
|
|
names = from_str_array(cf.names),
|
|
)
|
|
end
|
|
|
|
function are_constraints_satisfied(self, cf; tol = 1e-5)
|
|
lhs = cf.lhs
|
|
if lhs isa Matrix
|
|
# Undo incorrect automatic conversion performed by PyCall
|
|
lhs = [col[:] for col in eachcol(lhs)]
|
|
end
|
|
return are_constraints_satisfied(
|
|
self.data,
|
|
lhs = lhs,
|
|
rhs = cf.rhs,
|
|
senses = from_str_array(cf.senses),
|
|
tol = tol,
|
|
)
|
|
end
|
|
|
|
build_test_instance_infeasible(self) = build_test_instance_infeasible()
|
|
|
|
build_test_instance_knapsack(self) = build_test_instance_knapsack()
|
|
|
|
clone(self) = JuMPSolver(self.data.optimizer_factory)
|
|
|
|
fix(self, solution) = fix!(self.data, solution)
|
|
|
|
get_solution(self) = isempty(self.data.solution) ? nothing : self.data.solution
|
|
|
|
get_constraints(self; with_static = true, with_sa = true, with_lhs = true) =
|
|
get_constraints(
|
|
self.data,
|
|
with_static = with_static,
|
|
with_sa = with_sa,
|
|
with_lhs = with_lhs,
|
|
)
|
|
|
|
get_constraint_attrs(self) = [
|
|
# "basis_status",
|
|
"categories",
|
|
"dual_values",
|
|
"lazy",
|
|
"lhs",
|
|
"names",
|
|
"rhs",
|
|
# "sa_rhs_down",
|
|
# "sa_rhs_up",
|
|
"senses",
|
|
# "slacks",
|
|
"user_features",
|
|
]
|
|
|
|
get_variables(self; with_static = true, with_sa = true) =
|
|
get_variables(self.data; with_static = with_static)
|
|
|
|
function get_variable_attrs(self)
|
|
attrs = [
|
|
"names",
|
|
"categories",
|
|
"lower_bounds",
|
|
"obj_coeffs",
|
|
"reduced_costs",
|
|
"types",
|
|
"upper_bounds",
|
|
"user_features",
|
|
"values",
|
|
]
|
|
if repr(self.data.optimizer_factory) in ["Gurobi.Optimizer"]
|
|
append!(
|
|
attrs,
|
|
[
|
|
"basis_status",
|
|
"sa_obj_down",
|
|
"sa_obj_up",
|
|
"sa_lb_down",
|
|
"sa_lb_up",
|
|
"sa_ub_down",
|
|
"sa_ub_up",
|
|
],
|
|
)
|
|
end
|
|
return attrs
|
|
end
|
|
|
|
is_infeasible(self) = is_infeasible(self.data)
|
|
|
|
remove_constraints(self, names) = remove_constraints(self.data, [n for n in names])
|
|
|
|
set_instance(self, instance, model = nothing) =
|
|
set_instance!(self.data, instance, model = model)
|
|
|
|
set_warm_start(self, solution) = set_warm_start!(self.data, solution)
|
|
|
|
solve(
|
|
self;
|
|
tee = false,
|
|
iteration_cb = nothing,
|
|
lazy_cb = nothing,
|
|
user_cut_cb = nothing,
|
|
) = solve(self.data, tee = tee, iteration_cb = iteration_cb, lazy_cb = lazy_cb)
|
|
|
|
solve_lp(self; tee = false) = solve_lp(self.data, tee = tee)
|
|
end
|
|
copy!(JuMPSolver, Class)
|
|
end
|
|
|
|
function value(solver::JuMPSolverData, var::VariableRef)
|
|
if solver.cb_data !== nothing
|
|
return JuMP.callback_value(solver.cb_data, var)
|
|
else
|
|
return JuMP.value(var)
|
|
end
|
|
end
|
|
|
|
function submit(solver::JuMPSolverData, con::AbstractConstraint, name::String = "")
|
|
if solver.cb_data !== nothing
|
|
MOI.submit(solver.model, MOI.LazyConstraint(solver.cb_data), con)
|
|
else
|
|
JuMP.add_constraint(solver.model, con, name)
|
|
end
|
|
end
|
|
|
|
export JuMPSolver, submit
|