You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn.jl/test/fixtures/knapsack.jl

51 lines
1.8 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
using MIPLearn
Base.@kwdef struct KnapsackData
weights = [1.0, 2.0, 3.0]
prices = [5.0, 6.0, 7.0]
capacity = 3.0
end
function build_knapsack_model(data = KnapsackData())
model = Model()
n = length(data.weights)
@variable(model, x[1:n], Bin)
@objective(model, Max, sum(x[i] * data.prices[i] for i = 1:n))
@constraint(model, c1, sum(x[i] * data.weights[i] for i = 1:n) <= data.capacity)
# # Add ML information to the model
# @feature(model, [5.0])
# @feature(c1, [1.0, 2.0, 3.0])
# @category(c1, "c1")
# for i = 1:n
# @feature(x[i], [weights[i]; prices[i]])
# @category(x[i], "type-$i")
# end
# # Should store ML information
# @test model.ext[:miplearn]["variable_features"]["x[1]"] == [1.0, 5.0]
# @test model.ext[:miplearn]["variable_features"]["x[2]"] == [2.0, 6.0]
# @test model.ext[:miplearn]["variable_features"]["x[3]"] == [3.0, 7.0]
# @test model.ext[:miplearn]["variable_categories"]["x[1]"] == "type-1"
# @test model.ext[:miplearn]["variable_categories"]["x[2]"] == "type-2"
# @test model.ext[:miplearn]["variable_categories"]["x[3]"] == "type-3"
# @test model.ext[:miplearn]["constraint_features"]["c1"] == [1.0, 2.0, 3.0]
# @test model.ext[:miplearn]["constraint_categories"]["c1"] == "c1"
# @test model.ext[:miplearn]["instance_features"] == [5.0]
return model
end
function build_knapsack_file_instance()
data = KnapsackData()
filename = tempname()
MIPLearn.save_data(filename, data)
return FileInstance(filename, build_knapsack_model)
end