You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn.jl/src/jump_solver.jl

254 lines
7.5 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
using CPLEX
using MathOptInterface
const MOI = MathOptInterface
using TimerOutputs
mutable struct JuMPSolverData
basename_idx_to_var
var_to_basename_idx
optimizer
instance
model
bin_vars
solution::Union{Nothing,Dict{String,Dict{String,Float64}}}
time_limit::Union{Nothing, Float64}
end
function varname_split(varname::String)
m = match(r"([^[]*)\[(.*)\]", varname)
if m == nothing
return varname, ""
end
return m.captures[1], m.captures[2]
end
"""
optimize_and_capture_output!(model; tee=tee)
Optimizes a given JuMP model while capturing the solver log, then returns that log.
If tee=true, prints the solver log to the standard output as the optimization takes place.
"""
function optimize_and_capture_output!(model; tee::Bool=false)
original_stdout = stdout
rd, wr = redirect_stdout()
task = @async begin
log = ""
while true
line = String(readavailable(rd))
isopen(rd) || break
log *= String(line)
if tee
print(original_stdout, line)
flush(original_stdout)
end
end
return log
end
JuMP.optimize!(model)
sleep(1)
redirect_stdout(original_stdout)
close(rd)
return fetch(task)
end
function solve(data::JuMPSolverData; tee::Bool=false)
instance, model = data.instance, data.model
if data.time_limit != nothing
JuMP.set_time_limit_sec(model, data.time_limit)
end
wallclock_time = 0
found_lazy = []
log = ""
while true
log *= optimize_and_capture_output!(model, tee=tee)
wallclock_time += JuMP.solve_time(model)
violations = instance.find_violated_lazy_constraints(model)
if length(violations) == 0
break
end
append!(found_lazy, violations)
for v in violations
instance.build_lazy_constraint(data.model, v)
end
end
update_solution!(data)
instance.found_violated_lazy_constraints = found_lazy
instance.found_violated_user_cuts = []
primal_bound = JuMP.objective_value(model)
dual_bound = JuMP.objective_bound(model)
if JuMP.objective_sense(model) == MOI.MIN_SENSE
sense = "min"
lower_bound = dual_bound
upper_bound = primal_bound
else
sense = "max"
lower_bound = primal_bound
upper_bound = dual_bound
end
return Dict("Lower bound" => lower_bound,
"Upper bound" => upper_bound,
"Sense" => sense,
"Wallclock time" => wallclock_time,
"Nodes" => 1,
"Log" => log,
"Warm start value" => nothing)
end
function solve_lp(data::JuMPSolverData; tee::Bool=false)
model, bin_vars = data.model, data.bin_vars
for var in bin_vars
JuMP.unset_binary(var)
JuMP.set_upper_bound(var, 1.0)
JuMP.set_lower_bound(var, 0.0)
end
log = optimize_and_capture_output!(model, tee=tee)
update_solution!(data)
obj_value = JuMP.objective_value(model)
for var in bin_vars
JuMP.set_binary(var)
end
return Dict("Optimal value" => obj_value,
"Log" => log)
end
function update_solution!(data::JuMPSolverData)
var_to_basename_idx, model = data.var_to_basename_idx, data.model
solution = Dict{String,Dict{String,Float64}}()
for var in JuMP.all_variables(model)
var in keys(var_to_basename_idx) || continue
basename, idx = var_to_basename_idx[var]
if !haskey(solution, basename)
solution[basename] = Dict{String,Float64}()
end
solution[basename][idx] = JuMP.value(var)
end
data.solution = solution
end
function get_variables(data::JuMPSolverData)
var_to_basename_idx, model = data.var_to_basename_idx, data.model
variables = Dict()
for var in JuMP.all_variables(model)
var in keys(var_to_basename_idx) || continue
basename, idx = var_to_basename_idx[var]
if !haskey(variables, basename)
variables[basename] = []
end
push!(variables[basename], idx)
end
return variables
end
function set_instance!(data::JuMPSolverData, instance, model)
data.instance = instance
data.model = model
data.var_to_basename_idx = Dict(var => varname_split(JuMP.name(var))
for var in JuMP.all_variables(model))
data.basename_idx_to_var = Dict(varname_split(JuMP.name(var)) => var
for var in JuMP.all_variables(model))
data.bin_vars = [var
for var in JuMP.all_variables(model)
if JuMP.is_binary(var)]
if data.optimizer != nothing
JuMP.set_optimizer(model, data.optimizer)
end
end
function fix!(data::JuMPSolverData, solution)
count = 0
for (basename, subsolution) in solution
for (idx, value) in subsolution
value != nothing || continue
var = data.basename_idx_to_var[basename, idx]
JuMP.fix(var, value, force=true)
count += 1
end
end
@info "Fixing $count variables"
end
function set_warm_start!(data::JuMPSolverData, solution)
count = 0
for (basename, subsolution) in solution
for (idx, value) in subsolution
value != nothing || continue
var = data.basename_idx_to_var[basename, idx]
JuMP.set_start_value(var, value)
count += 1
end
end
@info "Setting warm start values for $count variables"
end
@pydef mutable struct JuMPSolver <: miplearn.solvers.internal.InternalSolver
function __init__(self; optimizer)
self.data = JuMPSolverData(nothing, # basename_idx_to_var
nothing, # var_to_basename_idx
optimizer,
nothing, # instance
nothing, # model
nothing, # bin_vars
nothing, # solution
nothing, # time limit
)
end
set_warm_start(self, solution) =
set_warm_start!(self.data, solution)
fix(self, solution) =
fix!(self.data, solution)
set_instance(self, instance, model) =
set_instance!(self.data, instance, model)
solve(self; tee=false) =
solve(self.data, tee=tee)
solve_lp(self; tee=false) =
solve_lp(self.data, tee=tee)
get_solution(self) =
self.data.solution
get_variables(self) =
get_variables(self.data)
set_time_limit(self, time_limit) =
self.data.time_limit = time_limit
set_gap_tolerance(self, gap_tolerance) =
@warn "JuMPSolver: set_gap_tolerance not implemented"
set_node_limit(self) =
@warn "JuMPSolver: set_node_limit not implemented"
set_threads(self, threads) =
@warn "JuMPSolver: set_threads not implemented"
set_branching_priorities(self, priorities) =
@warn "JuMPSolver: set_branching_priorities not implemented"
add_constraint(self, constraint) = nothing
clear_warm_start(self) =
error("JuMPSolver.clear_warm_start should never be called")
end
export JuMPSolver, solve!, fit!, add!