You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
254 lines
7.5 KiB
254 lines
7.5 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
using JuMP
|
|
using CPLEX
|
|
using MathOptInterface
|
|
const MOI = MathOptInterface
|
|
using TimerOutputs
|
|
|
|
|
|
mutable struct JuMPSolverData
|
|
basename_idx_to_var
|
|
var_to_basename_idx
|
|
optimizer
|
|
instance
|
|
model
|
|
bin_vars
|
|
solution::Union{Nothing,Dict{String,Dict{String,Float64}}}
|
|
time_limit::Union{Nothing, Float64}
|
|
end
|
|
|
|
|
|
function varname_split(varname::String)
|
|
m = match(r"([^[]*)\[(.*)\]", varname)
|
|
if m == nothing
|
|
return varname, ""
|
|
end
|
|
return m.captures[1], m.captures[2]
|
|
end
|
|
|
|
|
|
"""
|
|
optimize_and_capture_output!(model; tee=tee)
|
|
|
|
Optimizes a given JuMP model while capturing the solver log, then returns that log.
|
|
If tee=true, prints the solver log to the standard output as the optimization takes place.
|
|
"""
|
|
function optimize_and_capture_output!(model; tee::Bool=false)
|
|
original_stdout = stdout
|
|
rd, wr = redirect_stdout()
|
|
task = @async begin
|
|
log = ""
|
|
while true
|
|
line = String(readavailable(rd))
|
|
isopen(rd) || break
|
|
log *= String(line)
|
|
if tee
|
|
print(original_stdout, line)
|
|
flush(original_stdout)
|
|
end
|
|
end
|
|
return log
|
|
end
|
|
JuMP.optimize!(model)
|
|
sleep(1)
|
|
redirect_stdout(original_stdout)
|
|
close(rd)
|
|
return fetch(task)
|
|
end
|
|
|
|
|
|
function solve(data::JuMPSolverData; tee::Bool=false)
|
|
instance, model = data.instance, data.model
|
|
if data.time_limit != nothing
|
|
JuMP.set_time_limit_sec(model, data.time_limit)
|
|
end
|
|
wallclock_time = 0
|
|
found_lazy = []
|
|
log = ""
|
|
while true
|
|
log *= optimize_and_capture_output!(model, tee=tee)
|
|
wallclock_time += JuMP.solve_time(model)
|
|
violations = instance.find_violated_lazy_constraints(model)
|
|
if length(violations) == 0
|
|
break
|
|
end
|
|
append!(found_lazy, violations)
|
|
for v in violations
|
|
instance.build_lazy_constraint(data.model, v)
|
|
end
|
|
end
|
|
update_solution!(data)
|
|
instance.found_violated_lazy_constraints = found_lazy
|
|
instance.found_violated_user_cuts = []
|
|
primal_bound = JuMP.objective_value(model)
|
|
dual_bound = JuMP.objective_bound(model)
|
|
if JuMP.objective_sense(model) == MOI.MIN_SENSE
|
|
sense = "min"
|
|
lower_bound = dual_bound
|
|
upper_bound = primal_bound
|
|
else
|
|
sense = "max"
|
|
lower_bound = primal_bound
|
|
upper_bound = dual_bound
|
|
end
|
|
return Dict("Lower bound" => lower_bound,
|
|
"Upper bound" => upper_bound,
|
|
"Sense" => sense,
|
|
"Wallclock time" => wallclock_time,
|
|
"Nodes" => 1,
|
|
"Log" => log,
|
|
"Warm start value" => nothing)
|
|
end
|
|
|
|
|
|
function solve_lp(data::JuMPSolverData; tee::Bool=false)
|
|
model, bin_vars = data.model, data.bin_vars
|
|
for var in bin_vars
|
|
JuMP.unset_binary(var)
|
|
JuMP.set_upper_bound(var, 1.0)
|
|
JuMP.set_lower_bound(var, 0.0)
|
|
end
|
|
log = optimize_and_capture_output!(model, tee=tee)
|
|
update_solution!(data)
|
|
obj_value = JuMP.objective_value(model)
|
|
for var in bin_vars
|
|
JuMP.set_binary(var)
|
|
end
|
|
return Dict("Optimal value" => obj_value,
|
|
"Log" => log)
|
|
end
|
|
|
|
|
|
function update_solution!(data::JuMPSolverData)
|
|
var_to_basename_idx, model = data.var_to_basename_idx, data.model
|
|
solution = Dict{String,Dict{String,Float64}}()
|
|
for var in JuMP.all_variables(model)
|
|
var in keys(var_to_basename_idx) || continue
|
|
basename, idx = var_to_basename_idx[var]
|
|
if !haskey(solution, basename)
|
|
solution[basename] = Dict{String,Float64}()
|
|
end
|
|
solution[basename][idx] = JuMP.value(var)
|
|
end
|
|
data.solution = solution
|
|
end
|
|
|
|
|
|
function get_variables(data::JuMPSolverData)
|
|
var_to_basename_idx, model = data.var_to_basename_idx, data.model
|
|
variables = Dict()
|
|
for var in JuMP.all_variables(model)
|
|
var in keys(var_to_basename_idx) || continue
|
|
basename, idx = var_to_basename_idx[var]
|
|
if !haskey(variables, basename)
|
|
variables[basename] = []
|
|
end
|
|
push!(variables[basename], idx)
|
|
end
|
|
return variables
|
|
end
|
|
|
|
|
|
function set_instance!(data::JuMPSolverData, instance, model)
|
|
data.instance = instance
|
|
data.model = model
|
|
data.var_to_basename_idx = Dict(var => varname_split(JuMP.name(var))
|
|
for var in JuMP.all_variables(model))
|
|
data.basename_idx_to_var = Dict(varname_split(JuMP.name(var)) => var
|
|
for var in JuMP.all_variables(model))
|
|
data.bin_vars = [var
|
|
for var in JuMP.all_variables(model)
|
|
if JuMP.is_binary(var)]
|
|
if data.optimizer != nothing
|
|
JuMP.set_optimizer(model, data.optimizer)
|
|
end
|
|
end
|
|
|
|
|
|
function fix!(data::JuMPSolverData, solution)
|
|
count = 0
|
|
for (basename, subsolution) in solution
|
|
for (idx, value) in subsolution
|
|
value != nothing || continue
|
|
var = data.basename_idx_to_var[basename, idx]
|
|
JuMP.fix(var, value, force=true)
|
|
count += 1
|
|
end
|
|
end
|
|
@info "Fixing $count variables"
|
|
end
|
|
|
|
|
|
function set_warm_start!(data::JuMPSolverData, solution)
|
|
count = 0
|
|
for (basename, subsolution) in solution
|
|
for (idx, value) in subsolution
|
|
value != nothing || continue
|
|
var = data.basename_idx_to_var[basename, idx]
|
|
JuMP.set_start_value(var, value)
|
|
count += 1
|
|
end
|
|
end
|
|
@info "Setting warm start values for $count variables"
|
|
end
|
|
|
|
@pydef mutable struct JuMPSolver <: miplearn.solvers.internal.InternalSolver
|
|
function __init__(self; optimizer)
|
|
self.data = JuMPSolverData(nothing, # basename_idx_to_var
|
|
nothing, # var_to_basename_idx
|
|
optimizer,
|
|
nothing, # instance
|
|
nothing, # model
|
|
nothing, # bin_vars
|
|
nothing, # solution
|
|
nothing, # time limit
|
|
)
|
|
end
|
|
|
|
set_warm_start(self, solution) =
|
|
set_warm_start!(self.data, solution)
|
|
|
|
fix(self, solution) =
|
|
fix!(self.data, solution)
|
|
|
|
set_instance(self, instance, model) =
|
|
set_instance!(self.data, instance, model)
|
|
|
|
solve(self; tee=false) =
|
|
solve(self.data, tee=tee)
|
|
|
|
solve_lp(self; tee=false) =
|
|
solve_lp(self.data, tee=tee)
|
|
|
|
get_solution(self) =
|
|
self.data.solution
|
|
|
|
get_variables(self) =
|
|
get_variables(self.data)
|
|
|
|
set_time_limit(self, time_limit) =
|
|
self.data.time_limit = time_limit
|
|
|
|
set_gap_tolerance(self, gap_tolerance) =
|
|
@warn "JuMPSolver: set_gap_tolerance not implemented"
|
|
|
|
set_node_limit(self) =
|
|
@warn "JuMPSolver: set_node_limit not implemented"
|
|
|
|
set_threads(self, threads) =
|
|
@warn "JuMPSolver: set_threads not implemented"
|
|
|
|
set_branching_priorities(self, priorities) =
|
|
@warn "JuMPSolver: set_branching_priorities not implemented"
|
|
|
|
add_constraint(self, constraint) = nothing
|
|
|
|
clear_warm_start(self) =
|
|
error("JuMPSolver.clear_warm_start should never be called")
|
|
|
|
end
|
|
|
|
export JuMPSolver, solve!, fit!, add! |