You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
201 lines
5.9 KiB
201 lines
5.9 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2022, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import ..Hdf5Sample
|
|
|
|
using OrderedCollections
|
|
|
|
function collect_gmi(
|
|
mps_filename;
|
|
optimizer,
|
|
max_rounds=10,
|
|
max_cuts_per_round=100,
|
|
)
|
|
@info mps_filename
|
|
reset_timer!()
|
|
|
|
# Open HDF5 file
|
|
h5_filename = replace(mps_filename, ".mps.gz" => ".h5")
|
|
h5 = Hdf5Sample(h5_filename)
|
|
|
|
# Read optimal solution
|
|
sol_opt_dict = Dict(
|
|
zip(
|
|
h5.get_array("static_var_names"),
|
|
convert(Array{Float64}, h5.get_array("mip_var_values")),
|
|
)
|
|
)
|
|
|
|
# Read optimal value
|
|
obj_mip = h5.get_scalar("mip_lower_bound")
|
|
if obj_mip === nothing
|
|
obj_mip = h5.get_scalar("mip_obj_value")
|
|
end
|
|
obj_lp = nothing
|
|
h5.file.close()
|
|
|
|
# Define relative MIP gap
|
|
gap(v) = 100 * abs(obj_mip - v) / abs(v)
|
|
|
|
# Initialize stats
|
|
stats_obj = []
|
|
stats_gap = []
|
|
stats_ncuts = []
|
|
stats_time_convert = 0
|
|
stats_time_solve = 0
|
|
stats_time_select = 0
|
|
stats_time_tableau = 0
|
|
stats_time_gmi = 0
|
|
all_cuts = nothing
|
|
|
|
# Read problem
|
|
model = read_from_file(mps_filename)
|
|
|
|
for round in 1:max_rounds
|
|
@info "Round $(round)..."
|
|
|
|
stats_time_convert = @elapsed begin
|
|
# Extract problem data
|
|
data = ProblemData(model)
|
|
|
|
# Construct optimal solution vector (with correct variable sequence)
|
|
sol_opt = [sol_opt_dict[n] for n in data.var_names]
|
|
|
|
# Assert optimal solution is feasible for the original problem
|
|
@assert all(data.constr_lb .- 1e-3 .<= data.constr_lhs * sol_opt)
|
|
@assert all(data.constr_lhs * sol_opt .<= data.constr_ub .+ 1e-3)
|
|
|
|
# Convert to standard form
|
|
data_s, transforms = convert_to_standard_form(data)
|
|
model_s = to_model(data_s)
|
|
set_optimizer(model_s, optimizer)
|
|
relax_integrality(model_s)
|
|
|
|
# Convert optimal solution to standard form
|
|
sol_opt_s = forward(transforms, sol_opt)
|
|
|
|
# Assert converted solution is feasible for standard form problem
|
|
@assert data_s.constr_lhs * sol_opt_s ≈ data_s.constr_lb
|
|
end
|
|
|
|
# Optimize standard form
|
|
optimize!(model_s)
|
|
stats_time_solve += solve_time(model_s)
|
|
obj = objective_value(model_s) + data_s.obj_offset
|
|
if obj_lp === nothing
|
|
obj_lp = obj
|
|
push!(stats_obj, obj)
|
|
push!(stats_gap, gap(obj))
|
|
push!(stats_ncuts, 0)
|
|
end
|
|
if termination_status(model_s) != MOI.OPTIMAL
|
|
return
|
|
end
|
|
|
|
# Select tableau rows
|
|
basis = get_basis(model_s)
|
|
sol_frac = get_x(model_s)
|
|
stats_time_select += @elapsed begin
|
|
selected_rows = select_gmi_rows(
|
|
data_s,
|
|
basis,
|
|
sol_frac,
|
|
max_rows=max_cuts_per_round,
|
|
)
|
|
end
|
|
|
|
# Compute selected tableau rows
|
|
stats_time_tableau += @elapsed begin
|
|
tableau = compute_tableau(
|
|
data_s,
|
|
basis,
|
|
sol_frac,
|
|
rows=selected_rows,
|
|
)
|
|
|
|
# Assert tableau rows have been computed correctly
|
|
@assert tableau.lhs * sol_frac ≈ tableau.rhs
|
|
@assert tableau.lhs * sol_opt_s ≈ tableau.rhs
|
|
end
|
|
|
|
# Compute GMI cuts
|
|
stats_time_gmi += @elapsed begin
|
|
cuts_s = compute_gmi(data_s, tableau)
|
|
|
|
# Assert cuts have been generated correctly
|
|
try
|
|
assert_cuts_off(cuts_s, sol_frac)
|
|
assert_does_not_cut_off(cuts_s, sol_opt_s)
|
|
catch
|
|
@warn "Invalid cuts detected. Discarding round $round cuts and aborting."
|
|
break
|
|
end
|
|
|
|
# Abort if no cuts are left
|
|
if length(cuts_s.lb) == 0
|
|
@info "No cuts generated. Aborting."
|
|
break
|
|
end
|
|
end
|
|
|
|
# Add GMI cuts to original problem
|
|
cuts = backwards(transforms, cuts_s)
|
|
assert_does_not_cut_off(cuts, sol_opt)
|
|
constrs = add_constraint_set(model, cuts)
|
|
|
|
# Optimize original form
|
|
set_optimizer(model, optimizer)
|
|
undo_relax = relax_integrality(model)
|
|
optimize!(model)
|
|
obj = objective_value(model)
|
|
push!(stats_obj, obj)
|
|
push!(stats_gap, gap(obj))
|
|
|
|
# Store useful cuts; drop useless ones from the problem
|
|
useful = [
|
|
abs(shadow_price(c)) > 1e-3
|
|
for c in constrs
|
|
]
|
|
drop = findall(useful .== false)
|
|
keep = findall(useful .== true)
|
|
delete.(model, constrs[drop])
|
|
if all_cuts === nothing
|
|
all_cuts = cuts
|
|
else
|
|
all_cuts.lhs = [all_cuts.lhs; cuts.lhs[keep, :]]
|
|
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
|
|
all_cuts.lb = [all_cuts.lb; cuts.lb[keep]]
|
|
end
|
|
push!(stats_ncuts, length(all_cuts.lb))
|
|
|
|
undo_relax()
|
|
end
|
|
|
|
# Store cuts
|
|
if all_cuts !== nothing
|
|
@info "Storing $(length(all_cuts.ub)) GMI cuts..."
|
|
h5 = Hdf5Sample(h5_filename)
|
|
h5.put_sparse("cuts_lhs", all_cuts.lhs)
|
|
h5.put_array("cuts_lb", all_cuts.lb)
|
|
h5.put_array("cuts_ub", all_cuts.ub)
|
|
h5.file.close()
|
|
end
|
|
|
|
return OrderedDict(
|
|
"instance" => mps_filename,
|
|
"max_rounds" => max_rounds,
|
|
"rounds" => length(stats_obj) - 1,
|
|
"time_convert" => stats_time_convert,
|
|
"time_solve" => stats_time_solve,
|
|
"time_tableau" => stats_time_tableau,
|
|
"time_gmi" => stats_time_gmi,
|
|
"obj_mip" => obj_mip,
|
|
"obj_lp" => obj_lp,
|
|
"stats_obj" => stats_obj,
|
|
"stats_gap" => stats_gap,
|
|
"stats_ncuts" => stats_ncuts,
|
|
)
|
|
end
|
|
|
|
export collect_gmi |