You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn.jl/test/src/BB/test_bb.jl

135 lines
5.2 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Clp
# using CPLEX
using HiGHS
using JuMP
using Test
using MIPLearn.BB
using MIPLearn
basepath = @__DIR__
function bb_run(optimizer_name, optimizer; large = true)
@testset "Solve ($optimizer_name)" begin
@testset "interface" begin
filename = "$FIXTURES/danoint.mps.gz"
mip = BB.init(optimizer)
BB.read!(mip, filename)
@test mip.sense == 1.0
@test length(mip.int_vars) == 56
status, obj = BB.solve_relaxation!(mip)
@test status == :Optimal
@test round(obj, digits = 6) == 62.637280
@test BB.name(mip, mip.int_vars[1]) == "xab"
@test BB.name(mip, mip.int_vars[2]) == "xac"
@test BB.name(mip, mip.int_vars[3]) == "xad"
@test mip.int_vars_lb[1] == 0.0
@test mip.int_vars_ub[1] == 1.0
vals = BB.values(mip, mip.int_vars)
@test round(vals[1], digits = 6) == 0.046933
@test round(vals[2], digits = 6) == 0.000841
@test round(vals[3], digits = 6) == 0.248696
# Probe (up and down are feasible)
probe_up, probe_down = BB.probe(mip, mip.int_vars[1], 0.5, 0.0, 1.0, 1_000_000)
@test round(probe_down, digits = 6) == 62.690000
@test round(probe_up, digits = 6) == 62.714100
# Fix one variable to zero
BB.set_bounds!(mip, mip.int_vars[1:1], [0.0], [0.0])
status, obj = BB.solve_relaxation!(mip)
@test status == :Optimal
@test round(obj, digits = 6) == 62.690000
# Fix one variable to one and another variable variable to zero
BB.set_bounds!(mip, mip.int_vars[1:2], [1.0, 0.0], [1.0, 0.0])
status, obj = BB.solve_relaxation!(mip)
@test status == :Optimal
@test round(obj, digits = 6) == 62.714777
# Fix all binary variables to one, making problem infeasible
N = length(mip.int_vars)
BB.set_bounds!(mip, mip.int_vars, ones(N), ones(N))
status, obj = BB.solve_relaxation!(mip)
@test status == :Infeasible
@test obj == Inf
# Restore original problem
N = length(mip.int_vars)
BB.set_bounds!(mip, mip.int_vars, zeros(N), ones(N))
status, obj = BB.solve_relaxation!(mip)
@test status == :Optimal
@test round(obj, digits = 6) == 62.637280
end
@testset "varbranch" begin
for instance in ["bell5", "vpm2"]
for branch_rule in [
BB.RandomBranching(),
BB.FirstInfeasibleBranching(),
BB.LeastInfeasibleBranching(),
BB.MostInfeasibleBranching(),
BB.PseudocostBranching(),
BB.StrongBranching(),
BB.ReliabilityBranching(),
BB.HybridBranching(),
BB.StrongBranching(aggregation = :min),
BB.ReliabilityBranching(aggregation = :min, collect = true),
]
h5 = H5File("$FIXTURES/$instance.h5")
mip_lower_bound = h5.get_scalar("mip_lower_bound")
mip_upper_bound = h5.get_scalar("mip_upper_bound")
mip_sense = h5.get_scalar("mip_sense")
mip_primal_bound =
mip_sense == "min" ? mip_upper_bound : mip_lower_bound
h5.file.close()
mip = BB.init(optimizer)
BB.read!(mip, "$FIXTURES/$instance.mps.gz")
@info optimizer_name, branch_rule, instance
@time BB.solve!(
mip,
initial_primal_bound = mip_primal_bound,
print_interval = 1,
node_limit = 25,
branch_rule = branch_rule,
)
end
end
end
@testset "collect" begin
rule = BB.ReliabilityBranching(collect = true)
BB.collect!(
optimizer,
"$FIXTURES/bell5.mps.gz",
node_limit = 100,
print_interval = 10,
branch_rule = rule,
)
n_sb = rule.stats.num_strong_branch_calls
h5 = H5File("$FIXTURES/bell5.h5")
@test size(h5.get_array("bb_var_pseudocost_up")) == (104,)
@test size(h5.get_array("bb_score_var_names")) == (n_sb,)
@test size(h5.get_array("bb_score_features")) == (n_sb, 6)
@test size(h5.get_array("bb_score_targets")) == (n_sb,)
h5.file.close()
end
end
end
function test_bb()
@time bb_run("Clp", optimizer_with_attributes(Clp.Optimizer))
@time bb_run("HiGHS", optimizer_with_attributes(HiGHS.Optimizer))
# @time bb_run("CPLEX", optimizer_with_attributes(CPLEX.Optimizer, "CPXPARAM_Threads" => 1))
end