You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn.jl/src/Cuts/tableau/tableau.jl

154 lines
4.9 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2023, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using KLU
using TimerOutputs
function get_basis(model::JuMP.Model)::Basis
var_basic = Int[]
var_nonbasic = Int[]
constr_basic = Int[]
constr_nonbasic = Int[]
# Variables
for (i, var) in enumerate(all_variables(model))
bstatus = MOI.get(model, MOI.VariableBasisStatus(), var)
if bstatus == MOI.BASIC
push!(var_basic, i)
elseif bstatus == MOI.NONBASIC_AT_LOWER
push!(var_nonbasic, i)
else
error("Unknown basis status: $bstatus")
end
end
# Constraints
constr_index = 1
for (ftype, stype) in list_of_constraint_types(model)
for constr in all_constraints(model, ftype, stype)
if ftype == VariableRef
# nop
elseif ftype == AffExpr
bstatus = MOI.get(model, MOI.ConstraintBasisStatus(), constr)
if bstatus == MOI.BASIC
push!(constr_basic, constr_index)
elseif bstatus == MOI.NONBASIC
push!(constr_nonbasic, constr_index)
else
error("Unknown basis status: $bstatus")
end
constr_index += 1
else
error("Unsupported constraint type: ($ftype, $stype)")
end
end
end
return Basis(; var_basic, var_nonbasic, constr_basic, constr_nonbasic)
end
function get_x(model::JuMP.Model)
return JuMP.value.(all_variables(model))
end
function compute_tableau(
data::ProblemData,
basis::Basis;
x::Union{Nothing,Vector{Float64}} = nothing,
rows::Union{Vector{Int},Nothing} = nothing,
tol = 1e-8,
estimated_density = 0.10,
)::Tableau
@timeit "Split data" begin
nrows, ncols = size(data.constr_lhs)
lhs_slacks = sparse(I, nrows, nrows)
lhs_b = [data.constr_lhs[:, basis.var_basic] lhs_slacks[:, basis.constr_basic]]
obj_b = [data.obj[basis.var_basic]; zeros(length(basis.constr_basic))]
if rows === nothing
rows = 1:nrows
end
end
@timeit "Factorize basis matrix" begin
factor = klu(sparse(lhs_b'))
end
@timeit "Initialize arrays" begin
num_rows = length(rows)
tableau_rhs::Array{Float64} = zeros(num_rows)
tableau_rowptr::Array{Int} = zeros(Int, num_rows + 1)
tableau_colval::Array{Int} = Int[]
tableau_nzval::Array{Float64} = Float64[]
estimated_nnz::Int = round(num_rows * ncols * estimated_density)
sizehint!(tableau_colval, estimated_nnz)
sizehint!(tableau_nzval, estimated_nnz)
e::Array{Float64} = zeros(nrows)
sol::Array{Float64} = zeros(nrows)
tableau_row::Array{Float64} = zeros(ncols)
end
A = data.constr_lhs'
b = data.constr_ub
tableau_rowptr[1] = 1
@timeit "Process rows" begin
for k in eachindex(rows)
@timeit "Solve" begin
fill!(e, 0.0)
e[rows[k]] = 1.0
ldiv!(sol, factor, e)
end
@timeit "Compute row" begin
mul!(tableau_row, A, sol)
tableau_rhs[k] = dot(sol, b)
end
needed_space = length(tableau_colval) + ncols
if needed_space > estimated_nnz
@timeit "Grow arrays" begin
estimated_nnz *= 2
sizehint!(tableau_colval, estimated_nnz)
sizehint!(tableau_nzval, estimated_nnz)
end
end
@timeit "Collect nonzeros for row" begin
for j in 1:ncols
val = tableau_row[j]
if abs(val) > tol
push!(tableau_colval, j)
push!(tableau_nzval, val)
end
end
end
tableau_rowptr[k + 1] = length(tableau_colval) + 1
end
end
@timeit "Shrink arrays" begin
sizehint!(tableau_colval, length(tableau_colval))
sizehint!(tableau_nzval, length(tableau_nzval))
end
@timeit "Build sparse matrix" begin
tableau_lhs_transposed = SparseMatrixCSC(ncols, num_rows, tableau_rowptr, tableau_colval, tableau_nzval)
tableau_lhs = transpose(tableau_lhs_transposed)
end
@timeit "Compute tableau objective row" begin
sol = factor \ obj_b
tableau_obj = -data.obj' + sol' * data.constr_lhs
tableau_obj[abs.(tableau_obj).<tol] .= 0
tableau_obj = Array(tableau_obj')
end
# Compute z if solution is provided
z = 0
if x !== nothing
z = dot(data.obj, x)
end
return Tableau(obj = tableau_obj, lhs = tableau_lhs, rhs = tableau_rhs, z = z)
end
export get_basis, get_x, compute_tableau