mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
LazyStatic: Use dynamic thresholds
This commit is contained in:
@@ -11,6 +11,7 @@ from tqdm.auto import tqdm
|
||||
|
||||
from miplearn import Classifier
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.classifiers.threshold import MinProbabilityThreshold, Threshold
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.types import TrainingSample, Features, LearningSolveStats
|
||||
|
||||
@@ -36,13 +37,14 @@ class StaticLazyConstraintsComponent(Component):
|
||||
def __init__(
|
||||
self,
|
||||
classifier: Classifier = CountingClassifier(),
|
||||
threshold: float = 0.05,
|
||||
threshold: Threshold = MinProbabilityThreshold([0.50, 0.50]),
|
||||
violation_tolerance: float = -0.5,
|
||||
) -> None:
|
||||
assert isinstance(classifier, Classifier)
|
||||
self.threshold: float = threshold
|
||||
self.classifier_prototype: Classifier = classifier
|
||||
self.threshold_prototype: Threshold = threshold
|
||||
self.classifiers: Dict[Hashable, Classifier] = {}
|
||||
self.thresholds: Dict[Hashable, Threshold] = {}
|
||||
self.pool: Dict[str, LazyConstraint] = {}
|
||||
self.violation_tolerance: float = violation_tolerance
|
||||
self.enforced_cids: Set[str] = set()
|
||||
@@ -156,9 +158,10 @@ class StaticLazyConstraintsComponent(Component):
|
||||
for category in x.keys():
|
||||
if category not in self.classifiers:
|
||||
continue
|
||||
clf = self.classifiers[category]
|
||||
proba = clf.predict_proba(np.array(x[category]))
|
||||
pred = list(proba[:, 1] > self.threshold)
|
||||
npx = np.array(x[category])
|
||||
proba = self.classifiers[category].predict_proba(npx)
|
||||
thr = self.thresholds[category].predict(npx)
|
||||
pred = list(proba[:, 1] > thr[1])
|
||||
for (i, is_selected) in enumerate(pred):
|
||||
if is_selected:
|
||||
enforced_cids += [category_to_cids[category][i]]
|
||||
@@ -196,4 +199,6 @@ class StaticLazyConstraintsComponent(Component):
|
||||
for c in y.keys():
|
||||
assert c in x
|
||||
self.classifiers[c] = self.classifier_prototype.clone()
|
||||
self.thresholds[c] = self.threshold_prototype.clone()
|
||||
self.classifiers[c].fit(x[c], y[c])
|
||||
self.thresholds[c].fit(self.classifiers[c], x[c], y[c])
|
||||
|
||||
@@ -10,6 +10,7 @@ from numpy.testing import assert_array_equal
|
||||
|
||||
from miplearn import LearningSolver, InternalSolver, Instance
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.threshold import Threshold, MinProbabilityThreshold
|
||||
from miplearn.components.lazy_static import StaticLazyConstraintsComponent
|
||||
from miplearn.types import TrainingSample, Features, LearningSolveStats
|
||||
|
||||
@@ -69,10 +70,9 @@ def test_usage_with_solver(features: Features) -> None:
|
||||
instance = Mock(spec=Instance)
|
||||
instance.has_static_lazy_constraints = Mock(return_value=True)
|
||||
|
||||
component = StaticLazyConstraintsComponent(
|
||||
threshold=0.50,
|
||||
violation_tolerance=1.0,
|
||||
)
|
||||
component = StaticLazyConstraintsComponent(violation_tolerance=1.0)
|
||||
component.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
component.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
component.classifiers = {
|
||||
"type-a": Mock(spec=Classifier),
|
||||
"type-b": Mock(spec=Classifier),
|
||||
@@ -158,7 +158,9 @@ def test_sample_predict(
|
||||
features: Features,
|
||||
sample: TrainingSample,
|
||||
) -> None:
|
||||
comp = StaticLazyConstraintsComponent(threshold=0.5)
|
||||
comp = StaticLazyConstraintsComponent()
|
||||
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
||||
comp.classifiers["type-a"] = Mock(spec=Classifier)
|
||||
comp.classifiers["type-a"].predict_proba = lambda _: np.array( # type:ignore
|
||||
[
|
||||
@@ -192,9 +194,14 @@ def test_fit_xy() -> None:
|
||||
"type-b": np.array([[False, True]]),
|
||||
},
|
||||
)
|
||||
clf = Mock(spec=Classifier)
|
||||
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier))
|
||||
comp = StaticLazyConstraintsComponent(classifier=clf)
|
||||
clf: Classifier = Mock(spec=Classifier)
|
||||
thr: Threshold = Mock(spec=Threshold)
|
||||
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier)) # type: ignore
|
||||
thr.clone = Mock(side_effect=lambda: Mock(spec=Threshold)) # type: ignore
|
||||
comp = StaticLazyConstraintsComponent(
|
||||
classifier=clf,
|
||||
threshold=thr,
|
||||
)
|
||||
comp.fit_xy(x, y)
|
||||
assert clf.clone.call_count == 2
|
||||
clf_a = comp.classifiers["type-a"]
|
||||
@@ -203,6 +210,13 @@ def test_fit_xy() -> None:
|
||||
assert clf_b.fit.call_count == 1 # type: ignore
|
||||
assert_array_equal(clf_a.fit.call_args[0][0], x["type-a"]) # type: ignore
|
||||
assert_array_equal(clf_b.fit.call_args[0][0], x["type-b"]) # type: ignore
|
||||
assert thr.clone.call_count == 2
|
||||
thr_a = comp.thresholds["type-a"]
|
||||
thr_b = comp.thresholds["type-b"]
|
||||
assert thr_a.fit.call_count == 1 # type: ignore
|
||||
assert thr_b.fit.call_count == 1 # type: ignore
|
||||
assert thr_a.fit.call_args[0][0] == clf_a # type: ignore
|
||||
assert thr_b.fit.call_args[0][0] == clf_b # type: ignore
|
||||
|
||||
|
||||
def test_sample_xy(
|
||||
|
||||
Reference in New Issue
Block a user