Make MultiKnapsackGenerator return data class

This commit is contained in:
2022-02-22 09:20:17 -06:00
parent b0d63a0a2d
commit 03e5acb11a
2 changed files with 17 additions and 37 deletions

View File

@@ -6,7 +6,7 @@ import numpy as np
from scipy.stats import uniform, randint
from miplearn import LearningSolver
from miplearn.problems.knapsack import MultiKnapsackGenerator
from miplearn.problems.knapsack import MultiKnapsackGenerator, MultiKnapsackInstance
def test_knapsack_generator() -> None:
@@ -18,17 +18,22 @@ def test_knapsack_generator() -> None:
u=uniform(loc=1.0, scale=1.0),
alpha=uniform(loc=0.50, scale=0.0),
)
instances = gen.generate(100)
w_sum = sum(instance.weights for instance in instances) / len(instances)
b_sum = sum(instance.capacities for instance in instances) / len(instances)
data = gen.generate(100)
w_sum = sum(d.weights for d in data) / len(data)
b_sum = sum(d.capacities for d in data) / len(data)
assert round(float(np.mean(w_sum)), -1) == 500.0
assert round(float(np.mean(b_sum)), -3) == 25000.0
def test_knapsack() -> None:
instance = MultiKnapsackGenerator(
data = MultiKnapsackGenerator(
n=randint(low=5, high=6),
m=randint(low=5, high=6),
).generate(1)[0]
).generate(1)
instance = MultiKnapsackInstance(
prices=data[0].prices,
capacities=data[0].capacities,
weights=data[0].weights,
)
solver = LearningSolver()
solver.solve(instance)