mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Merge branch 'feature/training_sample' into dev
This commit is contained in:
@@ -3,3 +3,4 @@ ignore_missing_imports = True
|
||||
#disallow_untyped_defs = True
|
||||
disallow_untyped_calls = True
|
||||
disallow_incomplete_defs = True
|
||||
pretty = True
|
||||
|
||||
@@ -2,37 +2,31 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from .benchmark import BenchmarkRunner
|
||||
from .classifiers import Classifier, Regressor
|
||||
from .classifiers.adaptive import AdaptiveClassifier
|
||||
from .classifiers.threshold import MinPrecisionThreshold
|
||||
from .components.component import Component
|
||||
from .components.cuts import UserCutsComponent
|
||||
from .components.lazy_dynamic import DynamicLazyConstraintsComponent
|
||||
from .components.lazy_static import StaticLazyConstraintsComponent
|
||||
from .components.objective import ObjectiveValueComponent
|
||||
from .components.primal import PrimalSolutionComponent
|
||||
from .components.relaxation import RelaxationComponent
|
||||
from .components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
|
||||
from .components.steps.drop_redundant import DropRedundantInequalitiesStep
|
||||
from .components.steps.relax_integrality import RelaxIntegralityStep
|
||||
from .extractors import (
|
||||
SolutionExtractor,
|
||||
InstanceFeaturesExtractor,
|
||||
ObjectiveValueExtractor,
|
||||
VariableFeaturesExtractor,
|
||||
)
|
||||
|
||||
from .components.component import Component
|
||||
from .components.objective import ObjectiveValueComponent
|
||||
from .components.lazy_dynamic import DynamicLazyConstraintsComponent
|
||||
from .components.lazy_static import StaticLazyConstraintsComponent
|
||||
from .components.cuts import UserCutsComponent
|
||||
from .components.primal import PrimalSolutionComponent
|
||||
from .components.relaxation import RelaxationComponent
|
||||
from .components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
|
||||
from .components.steps.relax_integrality import RelaxIntegralityStep
|
||||
from .components.steps.drop_redundant import DropRedundantInequalitiesStep
|
||||
|
||||
from .classifiers import Classifier, Regressor
|
||||
from .classifiers.adaptive import AdaptiveClassifier
|
||||
from .classifiers.threshold import MinPrecisionThreshold
|
||||
|
||||
from .benchmark import BenchmarkRunner
|
||||
|
||||
from .instance import Instance
|
||||
|
||||
from .solvers.pyomo.base import BasePyomoSolver
|
||||
from .solvers.pyomo.cplex import CplexPyomoSolver
|
||||
from .solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
from .log import setup_logger
|
||||
from .solvers.gurobi import GurobiSolver
|
||||
from .solvers.internal import InternalSolver
|
||||
from .solvers.learning import LearningSolver
|
||||
|
||||
from .log import setup_logger
|
||||
from .solvers.pyomo.base import BasePyomoSolver
|
||||
from .solvers.pyomo.cplex import CplexPyomoSolver
|
||||
from .solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
|
||||
@@ -2,15 +2,14 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import os
|
||||
from copy import deepcopy
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import logging
|
||||
from tqdm.auto import tqdm
|
||||
import os
|
||||
|
||||
from .solvers.learning import LearningSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
class BenchmarkRunner:
|
||||
|
||||
@@ -5,14 +5,15 @@
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.classifiers.evaluator import ClassifierEvaluator
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.classifiers.evaluator import ClassifierEvaluator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
|
||||
@@ -2,9 +2,10 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
import numpy as np
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
|
||||
|
||||
class CountingClassifier(Classifier):
|
||||
"""
|
||||
|
||||
@@ -2,15 +2,15 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
from miplearn.classifiers import Classifier
|
||||
from sklearn.dummy import DummyClassifier
|
||||
from sklearn.linear_model import LogisticRegression
|
||||
from sklearn.model_selection import cross_val_score
|
||||
|
||||
import logging
|
||||
from miplearn.classifiers import Classifier
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -1,11 +1,12 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
|
||||
import numpy as np
|
||||
from numpy.linalg import norm
|
||||
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
|
||||
E = 0.1
|
||||
|
||||
|
||||
|
||||
@@ -3,11 +3,12 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import numpy as np
|
||||
from miplearn.classifiers.cv import CrossValidatedClassifier
|
||||
from numpy.linalg import norm
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.svm import SVC
|
||||
|
||||
from miplearn.classifiers.cv import CrossValidatedClassifier
|
||||
|
||||
E = 0.1
|
||||
|
||||
|
||||
|
||||
@@ -3,9 +3,10 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import numpy as np
|
||||
from miplearn.classifiers.evaluator import ClassifierEvaluator
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
||||
from miplearn.classifiers.evaluator import ClassifierEvaluator
|
||||
|
||||
|
||||
def test_evaluator():
|
||||
clf_a = KNeighborsClassifier(n_neighbors=1)
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.classifiers.threshold import MinPrecisionThreshold
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from miplearn import Component
|
||||
from miplearn.components.component import Component
|
||||
|
||||
|
||||
class CompositeComponent(Component):
|
||||
|
||||
@@ -2,14 +2,17 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
|
||||
from .component import Component
|
||||
from ..extractors import *
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.extractors import InstanceFeaturesExtractor
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -2,14 +2,17 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
|
||||
from .component import Component
|
||||
from ..extractors import *
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.extractors import InstanceFeaturesExtractor, InstanceIterator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -2,12 +2,15 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import sys
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from .component import Component
|
||||
from ..extractors import *
|
||||
from miplearn.components.component import Component
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -1,6 +1,12 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from sklearn.metrics import (
|
||||
mean_squared_error,
|
||||
explained_variance_score,
|
||||
@@ -9,11 +15,8 @@ from sklearn.metrics import (
|
||||
r2_score,
|
||||
)
|
||||
|
||||
from .. import Component, InstanceFeaturesExtractor, ObjectiveValueExtractor
|
||||
from sklearn.linear_model import LinearRegression
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import logging
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.extractors import InstanceFeaturesExtractor, ObjectiveValueExtractor
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -75,7 +78,15 @@ class ObjectiveValueComponent(Component):
|
||||
|
||||
def evaluate(self, instances):
|
||||
y_pred = self.predict(instances)
|
||||
y_true = np.array([[inst.lower_bound, inst.upper_bound] for inst in instances])
|
||||
y_true = np.array(
|
||||
[
|
||||
[
|
||||
inst.training_data[0]["Lower bound"],
|
||||
inst.training_data[0]["Upper bound"],
|
||||
]
|
||||
for inst in instances
|
||||
]
|
||||
)
|
||||
y_true_lb, y_true_ub = y_true[:, 0], y_true[:, 1]
|
||||
y_pred_lb, y_pred_ub = y_pred[:, 1], y_pred[:, 1]
|
||||
ev = {
|
||||
|
||||
@@ -68,7 +68,8 @@ class PrimalSolutionComponent(Component):
|
||||
for label in [0, 1]:
|
||||
y_train = solutions[category][:, label].astype(int)
|
||||
|
||||
# If all samples are either positive or negative, make constant predictions
|
||||
# If all samples are either positive or negative, make constant
|
||||
# predictions
|
||||
y_avg = np.average(y_train)
|
||||
if y_avg < 0.001 or y_avg >= 0.999:
|
||||
self.classifiers[category, label] = round(y_avg)
|
||||
@@ -130,7 +131,7 @@ class PrimalSolutionComponent(Component):
|
||||
desc="Evaluate (primal)",
|
||||
):
|
||||
instance = instances[instance_idx]
|
||||
solution_actual = instance.solution
|
||||
solution_actual = instance.training_data[0]["Solution"]
|
||||
solution_pred = self.predict(instance)
|
||||
|
||||
vars_all, vars_one, vars_zero = set(), set(), set()
|
||||
|
||||
@@ -4,8 +4,8 @@
|
||||
|
||||
import logging
|
||||
|
||||
from miplearn import Component
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.components.composite import CompositeComponent
|
||||
from miplearn.components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
|
||||
from miplearn.components.steps.drop_redundant import DropRedundantInequalitiesStep
|
||||
|
||||
@@ -3,17 +3,17 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import random
|
||||
from copy import deepcopy
|
||||
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import random
|
||||
|
||||
from ... import Component
|
||||
from ...classifiers.counting import CountingClassifier
|
||||
from ...components import classifier_evaluation_dict
|
||||
from ...extractors import InstanceIterator
|
||||
from .drop_redundant import DropRedundantInequalitiesStep
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.components.steps.drop_redundant import DropRedundantInequalitiesStep
|
||||
from miplearn.extractors import InstanceIterator
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -8,9 +8,9 @@ from copy import deepcopy
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from miplearn import Component
|
||||
from miplearn.classifiers.counting import CountingClassifier
|
||||
from miplearn.components import classifier_evaluation_dict
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.components.lazy_static import LazyConstraint
|
||||
from miplearn.extractors import InstanceIterator
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
import logging
|
||||
|
||||
from miplearn import Component
|
||||
from miplearn.components.component import Component
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -1,9 +1,12 @@
|
||||
from miplearn import LearningSolver, GurobiSolver, Instance, Classifier
|
||||
from unittest.mock import Mock
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.components.steps.convert_tight import ConvertTightIneqsIntoEqsStep
|
||||
from miplearn.components.steps.relax_integrality import RelaxIntegralityStep
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.problems.knapsack import GurobiKnapsackInstance
|
||||
|
||||
from unittest.mock import Mock
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def test_convert_tight_usage():
|
||||
@@ -21,8 +24,8 @@ def test_convert_tight_usage():
|
||||
)
|
||||
|
||||
# Solve original problem
|
||||
solver.solve(instance)
|
||||
original_upper_bound = instance.upper_bound
|
||||
stats = solver.solve(instance)
|
||||
original_upper_bound = stats["Upper bound"]
|
||||
|
||||
# Should collect training data
|
||||
assert instance.training_data[0]["slacks"]["eq_capacity"] == 0.0
|
||||
@@ -32,15 +35,14 @@ def test_convert_tight_usage():
|
||||
stats = solver.solve(instance)
|
||||
|
||||
# Objective value should be the same
|
||||
assert instance.upper_bound == original_upper_bound
|
||||
assert stats["Upper bound"] == original_upper_bound
|
||||
assert stats["ConvertTight: Inf iterations"] == 0
|
||||
assert stats["ConvertTight: Subopt iterations"] == 0
|
||||
|
||||
|
||||
class TestInstance(Instance):
|
||||
class SampleInstance(Instance):
|
||||
def to_model(self):
|
||||
import gurobipy as grb
|
||||
from gurobipy import GRB
|
||||
|
||||
m = grb.Model("model")
|
||||
x1 = m.addVar(name="x1")
|
||||
@@ -68,9 +70,9 @@ def test_convert_tight_infeasibility():
|
||||
components=[comp],
|
||||
solve_lp_first=False,
|
||||
)
|
||||
instance = TestInstance()
|
||||
instance = SampleInstance()
|
||||
stats = solver.solve(instance)
|
||||
assert instance.lower_bound == 5.0
|
||||
assert stats["Upper bound"] == 5.0
|
||||
assert stats["ConvertTight: Inf iterations"] == 1
|
||||
assert stats["ConvertTight: Subopt iterations"] == 0
|
||||
|
||||
@@ -91,9 +93,9 @@ def test_convert_tight_suboptimality():
|
||||
components=[comp],
|
||||
solve_lp_first=False,
|
||||
)
|
||||
instance = TestInstance()
|
||||
instance = SampleInstance()
|
||||
stats = solver.solve(instance)
|
||||
assert instance.lower_bound == 5.0
|
||||
assert stats["Upper bound"] == 5.0
|
||||
assert stats["ConvertTight: Inf iterations"] == 0
|
||||
assert stats["ConvertTight: Subopt iterations"] == 1
|
||||
|
||||
@@ -114,8 +116,8 @@ def test_convert_tight_optimal():
|
||||
components=[comp],
|
||||
solve_lp_first=False,
|
||||
)
|
||||
instance = TestInstance()
|
||||
instance = SampleInstance()
|
||||
stats = solver.solve(instance)
|
||||
assert instance.lower_bound == 5.0
|
||||
assert stats["Upper bound"] == 5.0
|
||||
assert stats["ConvertTight: Inf iterations"] == 0
|
||||
assert stats["ConvertTight: Subopt iterations"] == 0
|
||||
|
||||
@@ -2,21 +2,15 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import numpy as np
|
||||
from unittest.mock import Mock, call
|
||||
|
||||
from miplearn import (
|
||||
LearningSolver,
|
||||
Instance,
|
||||
InternalSolver,
|
||||
GurobiSolver,
|
||||
)
|
||||
import numpy as np
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.components.relaxation import (
|
||||
DropRedundantInequalitiesStep,
|
||||
RelaxIntegralityStep,
|
||||
)
|
||||
from miplearn.problems.knapsack import GurobiKnapsackInstance
|
||||
from miplearn.components.relaxation import DropRedundantInequalitiesStep
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def _setup():
|
||||
|
||||
@@ -4,8 +4,10 @@
|
||||
|
||||
from unittest.mock import Mock, call
|
||||
|
||||
from miplearn import Component, LearningSolver, Instance
|
||||
from miplearn.components.component import Component
|
||||
from miplearn.components.composite import CompositeComponent
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def test_composite():
|
||||
|
||||
@@ -5,11 +5,14 @@
|
||||
from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
from miplearn import DynamicLazyConstraintsComponent, LearningSolver, InternalSolver
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.tests import get_test_pyomo_instances
|
||||
from numpy.linalg import norm
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from miplearn.tests import get_test_pyomo_instances
|
||||
|
||||
E = 0.1
|
||||
|
||||
|
||||
|
||||
@@ -4,13 +4,11 @@
|
||||
|
||||
from unittest.mock import Mock, call
|
||||
|
||||
from miplearn import (
|
||||
StaticLazyConstraintsComponent,
|
||||
LearningSolver,
|
||||
Instance,
|
||||
InternalSolver,
|
||||
)
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.components.lazy_static import StaticLazyConstraintsComponent
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def test_usage_with_solver():
|
||||
@@ -49,7 +47,9 @@ def test_usage_with_solver():
|
||||
)
|
||||
|
||||
component = StaticLazyConstraintsComponent(
|
||||
threshold=0.90, use_two_phase_gap=False, violation_tolerance=1.0
|
||||
threshold=0.90,
|
||||
use_two_phase_gap=False,
|
||||
violation_tolerance=1.0,
|
||||
)
|
||||
component.classifiers = {
|
||||
"type-a": Mock(spec=Classifier),
|
||||
|
||||
@@ -5,8 +5,9 @@
|
||||
from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
from miplearn import ObjectiveValueComponent
|
||||
|
||||
from miplearn.classifiers import Regressor
|
||||
from miplearn.components.objective import ObjectiveValueComponent
|
||||
from miplearn.tests import get_test_pyomo_instances
|
||||
|
||||
|
||||
@@ -14,8 +15,8 @@ def test_usage():
|
||||
instances, models = get_test_pyomo_instances()
|
||||
comp = ObjectiveValueComponent()
|
||||
comp.fit(instances)
|
||||
assert instances[0].lower_bound == 1183.0
|
||||
assert instances[0].upper_bound == 1183.0
|
||||
assert instances[0].training_data[0]["Lower bound"] == 1183.0
|
||||
assert instances[0].training_data[0]["Upper bound"] == 1183.0
|
||||
assert np.round(comp.predict(instances), 2).tolist() == [
|
||||
[1183.0, 1183.0],
|
||||
[1070.0, 1070.0],
|
||||
|
||||
@@ -5,8 +5,9 @@
|
||||
from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
from miplearn import PrimalSolutionComponent
|
||||
|
||||
from miplearn.classifiers import Classifier
|
||||
from miplearn.components.primal import PrimalSolutionComponent
|
||||
from miplearn.tests import get_test_pyomo_instances
|
||||
|
||||
|
||||
@@ -49,7 +50,7 @@ def test_evaluate():
|
||||
comp = PrimalSolutionComponent(classifier=[clf_zero, clf_one], threshold=0.50)
|
||||
comp.fit(instances[:1])
|
||||
assert comp.predict(instances[0]) == {"x": {0: 0, 1: 0, 2: 1, 3: None}}
|
||||
assert instances[0].solution == {"x": {0: 1, 1: 0, 2: 1, 3: 1}}
|
||||
assert instances[0].training_data[0]["Solution"] == {"x": {0: 1, 1: 0, 2: 1, 3: 1}}
|
||||
ev = comp.evaluate(instances[:1])
|
||||
assert ev == {
|
||||
"Fix one": {
|
||||
|
||||
@@ -2,14 +2,13 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import gzip
|
||||
import logging
|
||||
import pickle
|
||||
import gzip
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import numpy as np
|
||||
|
||||
from tqdm.auto import tqdm
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -48,10 +47,10 @@ class Extractor(ABC):
|
||||
|
||||
@staticmethod
|
||||
def split_variables(instance):
|
||||
assert hasattr(instance, "lp_solution")
|
||||
result = {}
|
||||
for var_name in instance.lp_solution:
|
||||
for index in instance.lp_solution[var_name]:
|
||||
lp_solution = instance.training_data[0]["LP solution"]
|
||||
for var_name in lp_solution:
|
||||
for index in lp_solution[var_name]:
|
||||
category = instance.get_variable_category(var_name, index)
|
||||
if category is None:
|
||||
continue
|
||||
@@ -71,6 +70,7 @@ class VariableFeaturesExtractor(Extractor):
|
||||
):
|
||||
instance_features = instance.get_instance_features()
|
||||
var_split = self.split_variables(instance)
|
||||
lp_solution = instance.training_data[0]["LP solution"]
|
||||
for (category, var_index_pairs) in var_split.items():
|
||||
if category not in result:
|
||||
result[category] = []
|
||||
@@ -78,7 +78,7 @@ class VariableFeaturesExtractor(Extractor):
|
||||
result[category] += [
|
||||
instance_features.tolist()
|
||||
+ instance.get_variable_features(var_name, index).tolist()
|
||||
+ [instance.lp_solution[var_name][index]]
|
||||
+ [lp_solution[var_name][index]]
|
||||
]
|
||||
for category in result:
|
||||
result[category] = np.array(result[category])
|
||||
@@ -97,14 +97,15 @@ class SolutionExtractor(Extractor):
|
||||
disable=len(instances) < 5,
|
||||
):
|
||||
var_split = self.split_variables(instance)
|
||||
if self.relaxation:
|
||||
solution = instance.training_data[0]["LP solution"]
|
||||
else:
|
||||
solution = instance.training_data[0]["Solution"]
|
||||
for (category, var_index_pairs) in var_split.items():
|
||||
if category not in result:
|
||||
result[category] = []
|
||||
for (var_name, index) in var_index_pairs:
|
||||
if self.relaxation:
|
||||
v = instance.lp_solution[var_name][index]
|
||||
else:
|
||||
v = instance.solution[var_name][index]
|
||||
v = solution[var_name][index]
|
||||
if v is None:
|
||||
result[category] += [[0, 0]]
|
||||
else:
|
||||
@@ -121,7 +122,7 @@ class InstanceFeaturesExtractor(Extractor):
|
||||
np.hstack(
|
||||
[
|
||||
instance.get_instance_features(),
|
||||
instance.lp_value,
|
||||
instance.training_data[0]["LP value"],
|
||||
]
|
||||
)
|
||||
for instance in InstanceIterator(instances)
|
||||
@@ -137,13 +138,22 @@ class ObjectiveValueExtractor(Extractor):
|
||||
def extract(self, instances):
|
||||
if self.kind == "lower bound":
|
||||
return np.array(
|
||||
[[instance.lower_bound] for instance in InstanceIterator(instances)]
|
||||
[
|
||||
[instance.training_data[0]["Lower bound"]]
|
||||
for instance in InstanceIterator(instances)
|
||||
]
|
||||
)
|
||||
if self.kind == "upper bound":
|
||||
return np.array(
|
||||
[[instance.upper_bound] for instance in InstanceIterator(instances)]
|
||||
[
|
||||
[instance.training_data[0]["Upper bound"]]
|
||||
for instance in InstanceIterator(instances)
|
||||
]
|
||||
)
|
||||
if self.kind == "lp":
|
||||
return np.array(
|
||||
[[instance.lp_value] for instance in InstanceIterator(instances)]
|
||||
[
|
||||
[instance.training_data[0]["LP value"]]
|
||||
for instance in InstanceIterator(instances)
|
||||
]
|
||||
)
|
||||
|
||||
@@ -5,21 +5,28 @@
|
||||
import gzip
|
||||
import json
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any
|
||||
from typing import Any, List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from miplearn.types import TrainingSample
|
||||
|
||||
|
||||
class Instance(ABC):
|
||||
"""
|
||||
Abstract class holding all the data necessary to generate a concrete model of the problem.
|
||||
Abstract class holding all the data necessary to generate a concrete model of the
|
||||
problem.
|
||||
|
||||
In the knapsack problem, for example, this class could hold the number of items, their weights
|
||||
and costs, as well as the size of the knapsack. Objects implementing this class are able to
|
||||
convert themselves into a concrete optimization model, which can be optimized by a solver, or
|
||||
into arrays of features, which can be provided as inputs to machine learning models.
|
||||
In the knapsack problem, for example, this class could hold the number of items,
|
||||
their weights and costs, as well as the size of the knapsack. Objects
|
||||
implementing this class are able to convert themselves into a concrete
|
||||
optimization model, which can be optimized by a solver, or into arrays of
|
||||
features, which can be provided as inputs to machine learning models.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.training_data: List[TrainingSample] = []
|
||||
|
||||
@abstractmethod
|
||||
def to_model(self) -> Any:
|
||||
"""
|
||||
@@ -29,21 +36,23 @@ class Instance(ABC):
|
||||
|
||||
def get_instance_features(self):
|
||||
"""
|
||||
Returns a 1-dimensional Numpy array of (numerical) features describing the entire instance.
|
||||
Returns a 1-dimensional Numpy array of (numerical) features describing the
|
||||
entire instance.
|
||||
|
||||
The array is used by LearningSolver to determine how similar two instances are. It may also
|
||||
be used to predict, in combination with variable-specific features, the values of binary
|
||||
decision variables in the problem.
|
||||
The array is used by LearningSolver to determine how similar two instances
|
||||
are. It may also be used to predict, in combination with variable-specific
|
||||
features, the values of binary decision variables in the problem.
|
||||
|
||||
There is not necessarily a one-to-one correspondence between models and instance features:
|
||||
the features may encode only part of the data necessary to generate the complete model.
|
||||
Features may also be statistics computed from the original data. For example, in the
|
||||
knapsack problem, an implementation may decide to provide as instance features only
|
||||
the average weights, average prices, number of items and the size of the knapsack.
|
||||
There is not necessarily a one-to-one correspondence between models and
|
||||
instance features: the features may encode only part of the data necessary to
|
||||
generate the complete model. Features may also be statistics computed from
|
||||
the original data. For example, in the knapsack problem, an implementation
|
||||
may decide to provide as instance features only the average weights, average
|
||||
prices, number of items and the size of the knapsack.
|
||||
|
||||
The returned array MUST have the same length for all relevant instances of the problem. If
|
||||
two instances map into arrays of different lengths, they cannot be solved by the same
|
||||
LearningSolver object.
|
||||
The returned array MUST have the same length for all relevant instances of
|
||||
the problem. If two instances map into arrays of different lengths,
|
||||
they cannot be solved by the same LearningSolver object.
|
||||
|
||||
By default, returns [0].
|
||||
"""
|
||||
@@ -51,20 +60,22 @@ class Instance(ABC):
|
||||
|
||||
def get_variable_features(self, var, index):
|
||||
"""
|
||||
Returns a 1-dimensional array of (numerical) features describing a particular decision
|
||||
variable.
|
||||
Returns a 1-dimensional array of (numerical) features describing a particular
|
||||
decision variable.
|
||||
|
||||
The argument `var` is a pyomo.core.Var object, which represents a collection of decision
|
||||
variables. The argument `index` specifies which variable in the collection is the relevant
|
||||
one.
|
||||
The argument `var` is a pyomo.core.Var object, which represents a collection
|
||||
of decision variables. The argument `index` specifies which variable in the
|
||||
collection is the relevant one.
|
||||
|
||||
In combination with instance features, variable features are used by LearningSolver to
|
||||
predict, among other things, the optimal value of each decision variable before the
|
||||
optimization takes place. In the knapsack problem, for example, an implementation could
|
||||
provide as variable features the weight and the price of a specific item.
|
||||
In combination with instance features, variable features are used by
|
||||
LearningSolver to predict, among other things, the optimal value of each
|
||||
decision variable before the optimization takes place. In the knapsack
|
||||
problem, for example, an implementation could provide as variable features
|
||||
the weight and the price of a specific item.
|
||||
|
||||
Like instance features, the arrays returned by this method MUST have the same length for
|
||||
all variables within the same category, for all relevant instances of the problem.
|
||||
Like instance features, the arrays returned by this method MUST have the same
|
||||
length for all variables within the same category, for all relevant instances
|
||||
of the problem.
|
||||
|
||||
By default, returns [0].
|
||||
"""
|
||||
@@ -72,12 +83,12 @@ class Instance(ABC):
|
||||
|
||||
def get_variable_category(self, var, index):
|
||||
"""
|
||||
Returns the category (a string, an integer or any hashable type) for each decision
|
||||
variable.
|
||||
Returns the category (a string, an integer or any hashable type) for each
|
||||
decision variable.
|
||||
|
||||
If two variables have the same category, LearningSolver will use the same internal ML
|
||||
model to predict the values of both variables. If the returned category is None, ML
|
||||
models will ignore the variable.
|
||||
If two variables have the same category, LearningSolver will use the same
|
||||
internal ML model to predict the values of both variables. If the returned
|
||||
category is None, ML models will ignore the variable.
|
||||
|
||||
By default, returns "default".
|
||||
"""
|
||||
@@ -102,16 +113,16 @@ class Instance(ABC):
|
||||
"""
|
||||
Returns lazy constraint violations found for the current solution.
|
||||
|
||||
After solving a model, LearningSolver will ask the instance to identify which lazy
|
||||
constraints are violated by the current solution. For each identified violation,
|
||||
LearningSolver will then call the build_lazy_constraint, add the generated Pyomo
|
||||
constraint to the model, then resolve the problem. The process repeats until no further
|
||||
lazy constraint violations are found.
|
||||
After solving a model, LearningSolver will ask the instance to identify which
|
||||
lazy constraints are violated by the current solution. For each identified
|
||||
violation, LearningSolver will then call the build_lazy_constraint, add the
|
||||
generated Pyomo constraint to the model, then resolve the problem. The
|
||||
process repeats until no further lazy constraint violations are found.
|
||||
|
||||
Each "violation" is simply a string, a tuple or any other hashable type which allows the
|
||||
instance to identify unambiguously which lazy constraint should be generated. In the
|
||||
Traveling Salesman Problem, for example, a subtour violation could be a frozen set
|
||||
containing the cities in the subtour.
|
||||
Each "violation" is simply a string, a tuple or any other hashable type which
|
||||
allows the instance to identify unambiguously which lazy constraint should be
|
||||
generated. In the Traveling Salesman Problem, for example, a subtour
|
||||
violation could be a frozen set containing the cities in the subtour.
|
||||
|
||||
For a concrete example, see TravelingSalesmanInstance.
|
||||
"""
|
||||
@@ -121,15 +132,17 @@ class Instance(ABC):
|
||||
"""
|
||||
Returns a Pyomo constraint which fixes a given violation.
|
||||
|
||||
This method is typically called immediately after find_violated_lazy_constraints. The violation object
|
||||
provided to this method is exactly the same object returned earlier by find_violated_lazy_constraints.
|
||||
After some training, LearningSolver may decide to proactively build some lazy constraints
|
||||
at the beginning of the optimization process, before a solution is even available. In this
|
||||
case, build_lazy_constraints will be called without a corresponding call to
|
||||
This method is typically called immediately after
|
||||
find_violated_lazy_constraints. The violation object provided to this method
|
||||
is exactly the same object returned earlier by
|
||||
find_violated_lazy_constraints. After some training, LearningSolver may
|
||||
decide to proactively build some lazy constraints at the beginning of the
|
||||
optimization process, before a solution is even available. In this case,
|
||||
build_lazy_constraints will be called without a corresponding call to
|
||||
find_violated_lazy_constraints.
|
||||
|
||||
The implementation should not directly add the constraint to the model. The constraint
|
||||
will be added by LearningSolver after the method returns.
|
||||
The implementation should not directly add the constraint to the model. The
|
||||
constraint will be added by LearningSolver after the method returns.
|
||||
|
||||
For a concrete example, see TravelingSalesmanInstance.
|
||||
"""
|
||||
|
||||
@@ -2,10 +2,9 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from datetime import timedelta
|
||||
import logging
|
||||
import time
|
||||
import sys
|
||||
import time
|
||||
|
||||
|
||||
class TimeFormatter(logging.Formatter):
|
||||
|
||||
@@ -2,13 +2,13 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import miplearn
|
||||
from miplearn import Instance
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
from scipy.stats import uniform, randint, bernoulli
|
||||
from scipy.stats import uniform, randint
|
||||
from scipy.stats.distributions import rv_frozen
|
||||
|
||||
from miplearn.instance import Instance
|
||||
|
||||
|
||||
class ChallengeA:
|
||||
"""
|
||||
@@ -56,6 +56,7 @@ class MultiKnapsackInstance(Instance):
|
||||
"""
|
||||
|
||||
def __init__(self, prices, capacities, weights):
|
||||
super().__init__()
|
||||
assert isinstance(prices, np.ndarray)
|
||||
assert isinstance(capacities, np.ndarray)
|
||||
assert isinstance(weights, np.ndarray)
|
||||
@@ -241,6 +242,7 @@ class KnapsackInstance(Instance):
|
||||
"""
|
||||
|
||||
def __init__(self, weights, prices, capacity):
|
||||
super().__init__()
|
||||
self.weights = weights
|
||||
self.prices = prices
|
||||
self.capacity = capacity
|
||||
|
||||
@@ -8,7 +8,7 @@ import pyomo.environ as pe
|
||||
from scipy.stats import uniform, randint
|
||||
from scipy.stats.distributions import rv_frozen
|
||||
|
||||
from miplearn import Instance
|
||||
from miplearn.instance import Instance
|
||||
|
||||
|
||||
class ChallengeA:
|
||||
@@ -101,6 +101,7 @@ class MaxWeightStableSetInstance(Instance):
|
||||
"""
|
||||
|
||||
def __init__(self, graph, weights):
|
||||
super().__init__()
|
||||
self.graph = graph
|
||||
self.weights = weights
|
||||
|
||||
|
||||
@@ -2,10 +2,10 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from miplearn import LearningSolver
|
||||
from miplearn.problems.knapsack import MultiKnapsackGenerator, MultiKnapsackInstance
|
||||
from scipy.stats import uniform, randint
|
||||
import numpy as np
|
||||
from scipy.stats import uniform, randint
|
||||
|
||||
from miplearn.problems.knapsack import MultiKnapsackGenerator
|
||||
|
||||
|
||||
def test_knapsack_generator():
|
||||
|
||||
@@ -4,18 +4,19 @@
|
||||
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
from miplearn import LearningSolver
|
||||
from miplearn.problems.stab import MaxWeightStableSetInstance
|
||||
from scipy.stats import uniform, randint
|
||||
|
||||
from miplearn.problems.stab import MaxWeightStableSetInstance
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def test_stab():
|
||||
graph = nx.cycle_graph(5)
|
||||
weights = [1.0, 1.0, 1.0, 1.0, 1.0]
|
||||
instance = MaxWeightStableSetInstance(graph, weights)
|
||||
solver = LearningSolver()
|
||||
solver.solve(instance)
|
||||
assert instance.lower_bound == 2.0
|
||||
stats = solver.solve(instance)
|
||||
assert stats["Lower bound"] == 2.0
|
||||
|
||||
|
||||
def test_stab_generator_fixed_graph():
|
||||
|
||||
@@ -2,13 +2,14 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from miplearn import LearningSolver
|
||||
from miplearn.problems.tsp import TravelingSalesmanGenerator, TravelingSalesmanInstance
|
||||
import numpy as np
|
||||
from numpy.linalg import norm
|
||||
from scipy.spatial.distance import pdist, squareform
|
||||
from scipy.stats import uniform, randint
|
||||
|
||||
from miplearn.problems.tsp import TravelingSalesmanGenerator, TravelingSalesmanInstance
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def test_generator():
|
||||
instances = TravelingSalesmanGenerator(
|
||||
@@ -37,16 +38,16 @@ def test_instance():
|
||||
)
|
||||
instance = TravelingSalesmanInstance(n_cities, distances)
|
||||
solver = LearningSolver()
|
||||
solver.solve(instance)
|
||||
x = instance.solution["x"]
|
||||
stats = solver.solve(instance)
|
||||
x = instance.training_data[0]["Solution"]["x"]
|
||||
assert x[0, 1] == 1.0
|
||||
assert x[0, 2] == 0.0
|
||||
assert x[0, 3] == 1.0
|
||||
assert x[1, 2] == 1.0
|
||||
assert x[1, 3] == 0.0
|
||||
assert x[2, 3] == 1.0
|
||||
assert instance.lower_bound == 4.0
|
||||
assert instance.upper_bound == 4.0
|
||||
assert stats["Lower bound"] == 4.0
|
||||
assert stats["Upper bound"] == 4.0
|
||||
|
||||
|
||||
def test_subtour():
|
||||
@@ -67,7 +68,7 @@ def test_subtour():
|
||||
solver.solve(instance)
|
||||
assert hasattr(instance, "found_violated_lazy_constraints")
|
||||
assert hasattr(instance, "found_violated_user_cuts")
|
||||
x = instance.solution["x"]
|
||||
x = instance.training_data[0]["Solution"]["x"]
|
||||
assert x[0, 1] == 1.0
|
||||
assert x[0, 4] == 1.0
|
||||
assert x[1, 2] == 1.0
|
||||
|
||||
@@ -2,14 +2,14 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
from miplearn import Instance
|
||||
from scipy.stats import uniform, randint
|
||||
from scipy.spatial.distance import pdist, squareform
|
||||
from scipy.stats import uniform, randint
|
||||
from scipy.stats.distributions import rv_frozen
|
||||
import networkx as nx
|
||||
import random
|
||||
|
||||
from miplearn.instance import Instance
|
||||
|
||||
|
||||
class ChallengeA:
|
||||
|
||||
@@ -8,15 +8,15 @@ from io import StringIO
|
||||
from random import randint
|
||||
from typing import List, Any, Dict, Union, Tuple, Optional
|
||||
|
||||
from . import RedirectOutput
|
||||
from .internal import (
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.solvers import RedirectOutput
|
||||
from miplearn.solvers.internal import (
|
||||
InternalSolver,
|
||||
LPSolveStats,
|
||||
IterationCallback,
|
||||
LazyCallback,
|
||||
MIPSolveStats,
|
||||
)
|
||||
from .. import Instance
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -181,6 +181,7 @@ class GurobiSolver(InternalSolver):
|
||||
sense = "max"
|
||||
lb = self.model.objVal
|
||||
ub = self.model.objBound
|
||||
ws_value = self._extract_warm_start_value(log)
|
||||
stats: MIPSolveStats = {
|
||||
"Lower bound": lb,
|
||||
"Upper bound": ub,
|
||||
@@ -188,10 +189,9 @@ class GurobiSolver(InternalSolver):
|
||||
"Nodes": total_nodes,
|
||||
"Sense": sense,
|
||||
"Log": log,
|
||||
"Warm start value": ws_value,
|
||||
"LP value": None,
|
||||
}
|
||||
ws_value = self._extract_warm_start_value(log)
|
||||
if ws_value is not None:
|
||||
stats["Warm start value"] = ws_value
|
||||
return stats
|
||||
|
||||
def get_solution(self) -> Dict:
|
||||
|
||||
@@ -4,11 +4,15 @@
|
||||
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Callable, Any, Dict, List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from ..instance import Instance
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.types import (
|
||||
LPSolveStats,
|
||||
IterationCallback,
|
||||
LazyCallback,
|
||||
MIPSolveStats,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -21,33 +25,6 @@ class Constraint:
|
||||
pass
|
||||
|
||||
|
||||
LPSolveStats = TypedDict(
|
||||
"LPSolveStats",
|
||||
{
|
||||
"Optimal value": float,
|
||||
"Log": str,
|
||||
},
|
||||
)
|
||||
|
||||
MIPSolveStats = TypedDict(
|
||||
"MIPSolveStats",
|
||||
{
|
||||
"Lower bound": float,
|
||||
"Upper bound": float,
|
||||
"Wallclock time": float,
|
||||
"Nodes": float,
|
||||
"Sense": str,
|
||||
"Log": str,
|
||||
"Warm start value": float,
|
||||
},
|
||||
total=False,
|
||||
)
|
||||
|
||||
IterationCallback = Callable[[], bool]
|
||||
|
||||
LazyCallback = Callable[[Any, Any], None]
|
||||
|
||||
|
||||
class InternalSolver(ABC):
|
||||
"""
|
||||
Abstract class representing the MIP solver used internally by LearningSolver.
|
||||
|
||||
@@ -2,26 +2,24 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
import logging
|
||||
import pickle
|
||||
import os
|
||||
import tempfile
|
||||
import gzip
|
||||
|
||||
import logging
|
||||
import os
|
||||
import pickle
|
||||
import tempfile
|
||||
from copy import deepcopy
|
||||
from typing import Optional, List
|
||||
from p_tqdm import p_map
|
||||
from tempfile import NamedTemporaryFile
|
||||
from typing import Optional, List, Any, IO, cast, BinaryIO, Union
|
||||
|
||||
from . import RedirectOutput
|
||||
from .. import (
|
||||
ObjectiveValueComponent,
|
||||
PrimalSolutionComponent,
|
||||
DynamicLazyConstraintsComponent,
|
||||
UserCutsComponent,
|
||||
)
|
||||
from ..solvers.internal import InternalSolver
|
||||
from ..solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
from p_tqdm import p_map
|
||||
|
||||
from miplearn.components.cuts import UserCutsComponent
|
||||
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
||||
from miplearn.components.objective import ObjectiveValueComponent
|
||||
from miplearn.components.primal import PrimalSolutionComponent
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.solvers import RedirectOutput
|
||||
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
from miplearn.types import MIPSolveStats, TrainingSample
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -117,11 +115,11 @@ class LearningSolver:
|
||||
|
||||
def solve(
|
||||
self,
|
||||
instance,
|
||||
model=None,
|
||||
output="",
|
||||
tee=False,
|
||||
):
|
||||
instance: Union[Instance, str],
|
||||
model: Any = None,
|
||||
output: str = "",
|
||||
tee: bool = False,
|
||||
) -> MIPSolveStats:
|
||||
"""
|
||||
Solves the given instance. If trained machine-learning models are
|
||||
available, they will be used to accelerate the solution process.
|
||||
@@ -129,20 +127,9 @@ class LearningSolver:
|
||||
The argument `instance` may be either an Instance object or a
|
||||
filename pointing to a pickled Instance object.
|
||||
|
||||
This method modifies the instance object. Specifically, the following
|
||||
properties are set:
|
||||
|
||||
- instance.lp_solution
|
||||
- instance.lp_value
|
||||
- instance.lower_bound
|
||||
- instance.upper_bound
|
||||
- instance.solution
|
||||
- instance.solver_log
|
||||
|
||||
Additional solver components may set additional properties. Please
|
||||
see their documentation for more details. If a filename is provided,
|
||||
then the file is modified in-place. That is, the original file is
|
||||
overwritten.
|
||||
This method adds a new training sample to `instance.training_sample`.
|
||||
If a filename is provided, then the file is modified in-place. That is,
|
||||
the original file is overwritten.
|
||||
|
||||
If `solver.solve_lp_first` is False, the properties lp_solution and
|
||||
lp_value will be set to dummy values.
|
||||
@@ -192,46 +179,62 @@ class LearningSolver:
|
||||
|
||||
def _solve(
|
||||
self,
|
||||
instance,
|
||||
model=None,
|
||||
output="",
|
||||
tee=False,
|
||||
):
|
||||
instance: Union[Instance, str],
|
||||
model: Any = None,
|
||||
output: str = "",
|
||||
tee: bool = False,
|
||||
) -> MIPSolveStats:
|
||||
|
||||
# Load instance from file, if necessary
|
||||
filename = None
|
||||
fileformat = None
|
||||
file: Union[BinaryIO, gzip.GzipFile]
|
||||
if isinstance(instance, str):
|
||||
filename = instance
|
||||
logger.info("Reading: %s" % filename)
|
||||
if filename.endswith(".gz"):
|
||||
fileformat = "pickle-gz"
|
||||
with gzip.GzipFile(filename, "rb") as file:
|
||||
instance = pickle.load(file)
|
||||
instance = pickle.load(cast(IO[bytes], file))
|
||||
else:
|
||||
fileformat = "pickle"
|
||||
with open(filename, "rb") as file:
|
||||
instance = pickle.load(file)
|
||||
instance = pickle.load(cast(IO[bytes], file))
|
||||
assert isinstance(instance, Instance)
|
||||
|
||||
# Generate model
|
||||
if model is None:
|
||||
with RedirectOutput([]):
|
||||
model = instance.to_model()
|
||||
|
||||
# Initialize training sample
|
||||
training_sample: TrainingSample = {}
|
||||
if not hasattr(instance, "training_data"):
|
||||
instance.training_data = []
|
||||
instance.training_data += [training_sample]
|
||||
|
||||
# Initialize internal solver
|
||||
self.tee = tee
|
||||
self.internal_solver = self.solver_factory()
|
||||
self.internal_solver.set_instance(instance, model)
|
||||
|
||||
# Solve linear relaxation
|
||||
if self.solve_lp_first:
|
||||
logger.info("Solving LP relaxation...")
|
||||
results = self.internal_solver.solve_lp(tee=tee)
|
||||
instance.lp_solution = self.internal_solver.get_solution()
|
||||
instance.lp_value = results["Optimal value"]
|
||||
stats = self.internal_solver.solve_lp(tee=tee)
|
||||
training_sample["LP solution"] = self.internal_solver.get_solution()
|
||||
training_sample["LP value"] = stats["Optimal value"]
|
||||
training_sample["LP log"] = stats["Log"]
|
||||
else:
|
||||
instance.lp_solution = self.internal_solver.get_empty_solution()
|
||||
instance.lp_value = 0.0
|
||||
training_sample["LP solution"] = self.internal_solver.get_empty_solution()
|
||||
training_sample["LP value"] = 0
|
||||
|
||||
# Before-solve callbacks
|
||||
logger.debug("Running before_solve callbacks...")
|
||||
for component in self.components.values():
|
||||
component.before_solve(self, instance, model)
|
||||
|
||||
# Define wrappers
|
||||
def iteration_cb():
|
||||
should_repeat = False
|
||||
for comp in self.components.values():
|
||||
@@ -247,29 +250,28 @@ class LearningSolver:
|
||||
if self.use_lazy_cb:
|
||||
lazy_cb = lazy_cb_wrapper
|
||||
|
||||
# Solve MILP
|
||||
logger.info("Solving MILP...")
|
||||
stats = self.internal_solver.solve(
|
||||
tee=tee,
|
||||
iteration_cb=iteration_cb,
|
||||
lazy_cb=lazy_cb,
|
||||
)
|
||||
stats["LP value"] = instance.lp_value
|
||||
if "LP value" in training_sample.keys():
|
||||
stats["LP value"] = training_sample["LP value"]
|
||||
|
||||
# Read MIP solution and bounds
|
||||
instance.lower_bound = stats["Lower bound"]
|
||||
instance.upper_bound = stats["Upper bound"]
|
||||
instance.solver_log = stats["Log"]
|
||||
instance.solution = self.internal_solver.get_solution()
|
||||
training_sample["Lower bound"] = stats["Lower bound"]
|
||||
training_sample["Upper bound"] = stats["Upper bound"]
|
||||
training_sample["MIP log"] = stats["Log"]
|
||||
training_sample["Solution"] = self.internal_solver.get_solution()
|
||||
|
||||
# After-solve callbacks
|
||||
logger.debug("Calling after_solve callbacks...")
|
||||
training_data = {}
|
||||
for component in self.components.values():
|
||||
component.after_solve(self, instance, model, stats, training_data)
|
||||
|
||||
if not hasattr(instance, "training_data"):
|
||||
instance.training_data = []
|
||||
instance.training_data += [training_data]
|
||||
component.after_solve(self, instance, model, stats, training_sample)
|
||||
|
||||
# Write to file, if necessary
|
||||
if filename is not None and output is not None:
|
||||
output_filename = output
|
||||
if len(output) == 0:
|
||||
@@ -277,11 +279,10 @@ class LearningSolver:
|
||||
logger.info("Writing: %s" % output_filename)
|
||||
if fileformat == "pickle":
|
||||
with open(output_filename, "wb") as file:
|
||||
pickle.dump(instance, file)
|
||||
pickle.dump(instance, cast(IO[bytes], file))
|
||||
else:
|
||||
with gzip.GzipFile(output_filename, "wb") as file:
|
||||
pickle.dump(instance, file)
|
||||
|
||||
pickle.dump(instance, cast(IO[bytes], file))
|
||||
return stats
|
||||
|
||||
def parallel_solve(
|
||||
@@ -340,7 +341,7 @@ class LearningSolver:
|
||||
self._restore_miplearn_logger()
|
||||
return stats
|
||||
|
||||
def fit(self, training_instances):
|
||||
def fit(self, training_instances: Union[List[str], List[Instance]]) -> None:
|
||||
if len(training_instances) == 0:
|
||||
return
|
||||
for component in self.components.values():
|
||||
|
||||
@@ -12,15 +12,15 @@ import pyomo
|
||||
from pyomo import environ as pe
|
||||
from pyomo.core import Var, Constraint
|
||||
|
||||
from .. import RedirectOutput
|
||||
from ..internal import (
|
||||
from miplearn.instance import Instance
|
||||
from miplearn.solvers import RedirectOutput
|
||||
from miplearn.solvers.internal import (
|
||||
InternalSolver,
|
||||
LPSolveStats,
|
||||
IterationCallback,
|
||||
LazyCallback,
|
||||
MIPSolveStats,
|
||||
)
|
||||
from ...instance import Instance
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -98,19 +98,18 @@ class BasePyomoSolver(InternalSolver):
|
||||
if not should_repeat:
|
||||
break
|
||||
log = streams[0].getvalue()
|
||||
node_count = self._extract_node_count(log)
|
||||
ws_value = self._extract_warm_start_value(log)
|
||||
stats: MIPSolveStats = {
|
||||
"Lower bound": results["Problem"][0]["Lower bound"],
|
||||
"Upper bound": results["Problem"][0]["Upper bound"],
|
||||
"Wallclock time": total_wallclock_time,
|
||||
"Sense": self._obj_sense,
|
||||
"Log": log,
|
||||
"Nodes": node_count,
|
||||
"Warm start value": ws_value,
|
||||
"LP value": None,
|
||||
}
|
||||
node_count = self._extract_node_count(log)
|
||||
ws_value = self._extract_warm_start_value(log)
|
||||
if node_count is not None:
|
||||
stats["Nodes"] = node_count
|
||||
if ws_value is not None:
|
||||
stats["Warm start value"] = ws_value
|
||||
return stats
|
||||
|
||||
def get_solution(self) -> Dict:
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
from pyomo import environ as pe
|
||||
from scipy.stats import randint
|
||||
|
||||
from .base import BasePyomoSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
|
||||
|
||||
class CplexPyomoSolver(BasePyomoSolver):
|
||||
|
||||
@@ -7,7 +7,7 @@ import logging
|
||||
from pyomo import environ as pe
|
||||
from scipy.stats import randint
|
||||
|
||||
from .base import BasePyomoSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ import logging
|
||||
from pyomo import environ as pe
|
||||
from scipy.stats import randint
|
||||
|
||||
from .base import BasePyomoSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -5,15 +5,18 @@
|
||||
from inspect import isclass
|
||||
from typing import List, Callable
|
||||
|
||||
from miplearn import BasePyomoSolver, GurobiSolver, GurobiPyomoSolver, InternalSolver
|
||||
from miplearn.problems.knapsack import KnapsackInstance, GurobiKnapsackInstance
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.internal import InternalSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||
from miplearn.solvers.pyomo.xpress import XpressPyomoSolver
|
||||
|
||||
|
||||
def _get_instance(solver):
|
||||
def _is_subclass_or_instance(solver, parentClass):
|
||||
return isinstance(solver, parentClass) or (
|
||||
isclass(solver) and issubclass(solver, parentClass)
|
||||
def _is_subclass_or_instance(obj, parent_class):
|
||||
return isinstance(obj, parent_class) or (
|
||||
isclass(obj) and issubclass(obj, parent_class)
|
||||
)
|
||||
|
||||
if _is_subclass_or_instance(solver, BasePyomoSolver):
|
||||
|
||||
@@ -8,9 +8,10 @@ from warnings import warn
|
||||
|
||||
import pyomo.environ as pe
|
||||
|
||||
from miplearn import BasePyomoSolver, GurobiSolver
|
||||
from miplearn.solvers import RedirectOutput
|
||||
from . import _get_instance, _get_internal_solvers
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||
from miplearn.solvers.tests import _get_instance, _get_internal_solvers
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -44,7 +45,7 @@ def test_internal_solver_warm_starts():
|
||||
}
|
||||
)
|
||||
stats = solver.solve(tee=True)
|
||||
if "Warm start value" in stats:
|
||||
if stats["Warm start value"] is not None:
|
||||
assert stats["Warm start value"] == 725.0
|
||||
else:
|
||||
warn(f"{solver_class.__name__} should set warm start value")
|
||||
@@ -60,7 +61,7 @@ def test_internal_solver_warm_starts():
|
||||
}
|
||||
)
|
||||
stats = solver.solve(tee=True)
|
||||
assert "Warm start value" not in stats
|
||||
assert stats["Warm start value"] is None
|
||||
|
||||
solver.fix(
|
||||
{
|
||||
|
||||
@@ -4,8 +4,8 @@
|
||||
|
||||
import logging
|
||||
|
||||
from . import _get_instance
|
||||
from ... import GurobiSolver
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.tests import _get_instance
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -7,13 +7,9 @@ import pickle
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
from miplearn import (
|
||||
LearningSolver,
|
||||
GurobiSolver,
|
||||
DynamicLazyConstraintsComponent,
|
||||
)
|
||||
|
||||
from . import _get_instance, _get_internal_solvers
|
||||
from miplearn.solvers.gurobi import GurobiSolver
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
from miplearn.solvers.tests import _get_instance, _get_internal_solvers
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -29,20 +25,19 @@ def test_learning_solver():
|
||||
)
|
||||
|
||||
solver.solve(instance)
|
||||
assert instance.solution["x"][0] == 1.0
|
||||
assert instance.solution["x"][1] == 0.0
|
||||
assert instance.solution["x"][2] == 1.0
|
||||
assert instance.solution["x"][3] == 1.0
|
||||
assert instance.lower_bound == 1183.0
|
||||
assert instance.upper_bound == 1183.0
|
||||
assert round(instance.lp_solution["x"][0], 3) == 1.000
|
||||
assert round(instance.lp_solution["x"][1], 3) == 0.923
|
||||
assert round(instance.lp_solution["x"][2], 3) == 1.000
|
||||
assert round(instance.lp_solution["x"][3], 3) == 0.000
|
||||
assert round(instance.lp_value, 3) == 1287.923
|
||||
assert instance.found_violated_lazy_constraints == []
|
||||
assert instance.found_violated_user_cuts == []
|
||||
assert len(instance.solver_log) > 100
|
||||
data = instance.training_data[0]
|
||||
assert data["Solution"]["x"][0] == 1.0
|
||||
assert data["Solution"]["x"][1] == 0.0
|
||||
assert data["Solution"]["x"][2] == 1.0
|
||||
assert data["Solution"]["x"][3] == 1.0
|
||||
assert data["Lower bound"] == 1183.0
|
||||
assert data["Upper bound"] == 1183.0
|
||||
assert round(data["LP solution"]["x"][0], 3) == 1.000
|
||||
assert round(data["LP solution"]["x"][1], 3) == 0.923
|
||||
assert round(data["LP solution"]["x"][2], 3) == 1.000
|
||||
assert round(data["LP solution"]["x"][3], 3) == 0.000
|
||||
assert round(data["LP value"], 3) == 1287.923
|
||||
assert len(data["MIP log"]) > 100
|
||||
|
||||
solver.fit([instance])
|
||||
solver.solve(instance)
|
||||
@@ -52,6 +47,19 @@ def test_learning_solver():
|
||||
pickle.dump(solver, file)
|
||||
|
||||
|
||||
def test_solve_without_lp():
|
||||
for internal_solver in _get_internal_solvers():
|
||||
logger.info("Solver: %s" % internal_solver)
|
||||
instance = _get_instance(internal_solver)
|
||||
solver = LearningSolver(
|
||||
solver=internal_solver,
|
||||
solve_lp_first=False,
|
||||
)
|
||||
solver.solve(instance)
|
||||
solver.fit([instance])
|
||||
solver.solve(instance)
|
||||
|
||||
|
||||
def test_parallel_solve():
|
||||
for internal_solver in _get_internal_solvers():
|
||||
instances = [_get_instance(internal_solver) for _ in range(10)]
|
||||
@@ -59,7 +67,8 @@ def test_parallel_solve():
|
||||
results = solver.parallel_solve(instances, n_jobs=3)
|
||||
assert len(results) == 10
|
||||
for instance in instances:
|
||||
assert len(instance.solution["x"].keys()) == 4
|
||||
data = instance.training_data[0]
|
||||
assert len(data["Solution"]["x"].keys()) == 4
|
||||
|
||||
|
||||
def test_solve_fit_from_disk():
|
||||
@@ -77,14 +86,14 @@ def test_solve_fit_from_disk():
|
||||
solver.solve(filenames[0])
|
||||
with open(filenames[0], "rb") as file:
|
||||
instance = pickle.load(file)
|
||||
assert hasattr(instance, "solution")
|
||||
assert len(instance.training_data) > 0
|
||||
|
||||
# Test: parallel_solve
|
||||
solver.parallel_solve(filenames)
|
||||
for filename in filenames:
|
||||
with open(filename, "rb") as file:
|
||||
instance = pickle.load(file)
|
||||
assert hasattr(instance, "solution")
|
||||
assert len(instance.training_data) > 0
|
||||
|
||||
# Test: solve (with specified output)
|
||||
output = [f + ".out" for f in filenames]
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
from miplearn import LearningSolver
|
||||
|
||||
from miplearn.problems.knapsack import KnapsackInstance
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def get_test_pyomo_instances():
|
||||
|
||||
@@ -4,10 +4,12 @@
|
||||
|
||||
import os.path
|
||||
|
||||
from miplearn import LearningSolver, BenchmarkRunner
|
||||
from miplearn.benchmark import BenchmarkRunner
|
||||
from miplearn.problems.stab import MaxWeightStableSetGenerator
|
||||
from scipy.stats import randint
|
||||
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def test_benchmark():
|
||||
# Generate training and test instances
|
||||
|
||||
@@ -1,16 +1,15 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
import numpy as np
|
||||
|
||||
from miplearn.problems.knapsack import KnapsackInstance
|
||||
from miplearn import (
|
||||
LearningSolver,
|
||||
from miplearn.extractors import (
|
||||
SolutionExtractor,
|
||||
InstanceFeaturesExtractor,
|
||||
VariableFeaturesExtractor,
|
||||
)
|
||||
import numpy as np
|
||||
import pyomo.environ as pe
|
||||
from miplearn.problems.knapsack import KnapsackInstance
|
||||
from miplearn.solvers.learning import LearningSolver
|
||||
|
||||
|
||||
def _get_instances():
|
||||
|
||||
46
miplearn/types.py
Normal file
46
miplearn/types.py
Normal file
@@ -0,0 +1,46 @@
|
||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
from typing import TypedDict, Optional, Dict, Callable, Any
|
||||
|
||||
TrainingSample = TypedDict(
|
||||
"TrainingSample",
|
||||
{
|
||||
"LP log": str,
|
||||
"LP solution": Dict,
|
||||
"LP value": float,
|
||||
"Lower bound": float,
|
||||
"MIP log": str,
|
||||
"Solution": Dict,
|
||||
"Upper bound": float,
|
||||
"slacks": Dict,
|
||||
},
|
||||
total=False,
|
||||
)
|
||||
|
||||
LPSolveStats = TypedDict(
|
||||
"LPSolveStats",
|
||||
{
|
||||
"Optimal value": float,
|
||||
"Log": str,
|
||||
},
|
||||
)
|
||||
|
||||
MIPSolveStats = TypedDict(
|
||||
"MIPSolveStats",
|
||||
{
|
||||
"Lower bound": Optional[float],
|
||||
"Upper bound": Optional[float],
|
||||
"Wallclock time": float,
|
||||
"Nodes": Optional[int],
|
||||
"Sense": str,
|
||||
"Log": str,
|
||||
"Warm start value": Optional[float],
|
||||
"LP value": Optional[float],
|
||||
},
|
||||
)
|
||||
|
||||
IterationCallback = Callable[[], bool]
|
||||
|
||||
LazyCallback = Callable[[Any, Any], None]
|
||||
Reference in New Issue
Block a user