|
|
|
@ -49,17 +49,17 @@ class AdaptiveClassifier(Classifier):
|
|
|
|
|
self.classifier = None
|
|
|
|
|
|
|
|
|
|
def fit(self, x_train, y_train):
|
|
|
|
|
best_clf = None
|
|
|
|
|
best_score = -float("inf")
|
|
|
|
|
best_name, best_clf, best_score = None, None, -float("inf")
|
|
|
|
|
n_samples = x_train.shape[0]
|
|
|
|
|
for clf_dict in self.candidates.values():
|
|
|
|
|
for (name, clf_dict) in self.candidates.items():
|
|
|
|
|
if n_samples < clf_dict["min samples"]:
|
|
|
|
|
continue
|
|
|
|
|
clf = deepcopy(clf_dict["classifier"])
|
|
|
|
|
clf.fit(x_train, y_train)
|
|
|
|
|
score = self.evaluator.evaluate(clf, x_train, y_train)
|
|
|
|
|
if score > best_score:
|
|
|
|
|
best_clf, best_score = clf, score
|
|
|
|
|
best_name, best_clf, best_score = name, clf, score
|
|
|
|
|
logger.debug("Best classifier: %s (score=%.3f)" % (best_name, best_score))
|
|
|
|
|
self.classifier = best_clf
|
|
|
|
|
|
|
|
|
|
def predict_proba(self, x_test):
|
|
|
|
|