Replace InstanceIterator by PickleGzInstance

This commit is contained in:
2021-04-04 14:48:46 -05:00
parent b4770c6c0a
commit 08e808690e
14 changed files with 253 additions and 257 deletions

View File

@@ -18,7 +18,7 @@ from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
from miplearn.components.objective import ObjectiveValueComponent
from miplearn.components.primal import PrimalSolutionComponent
from miplearn.features import FeaturesExtractor
from miplearn.instance import Instance
from miplearn.instance import Instance, PickleGzInstance
from miplearn.solvers import _RedirectOutput
from miplearn.solvers.internal import InternalSolver
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
@@ -30,8 +30,7 @@ logger = logging.getLogger(__name__)
class _GlobalVariables:
def __init__(self) -> None:
self.solver: Optional[LearningSolver] = None
self.instances: Optional[Union[List[str], List[Instance]]] = None
self.output_filenames: Optional[List[str]] = None
self.instances: Optional[List[Instance]] = None
self.discard_outputs: bool = False
@@ -44,16 +43,10 @@ _GLOBAL = [_GlobalVariables()]
def _parallel_solve(idx):
solver = _GLOBAL[0].solver
instances = _GLOBAL[0].instances
output_filenames = _GLOBAL[0].output_filenames
discard_outputs = _GLOBAL[0].discard_outputs
if output_filenames is None:
output_filename = None
else:
output_filename = output_filenames[idx]
try:
stats = solver.solve(
instances[idx],
output_filename=output_filename,
discard_output=discard_outputs,
)
return stats, instances[idx]
@@ -129,30 +122,12 @@ class LearningSolver:
def _solve(
self,
instance: Union[Instance, str],
instance: Instance,
model: Any = None,
output_filename: Optional[str] = None,
discard_output: bool = False,
tee: bool = False,
) -> LearningSolveStats:
# Load instance from file, if necessary
filename = None
fileformat = None
file: Union[BinaryIO, gzip.GzipFile]
if isinstance(instance, str):
filename = instance
logger.info("Reading: %s" % filename)
if filename.endswith(".gz"):
fileformat = "pickle-gz"
with gzip.GzipFile(filename, "rb") as file:
instance = pickle.load(cast(IO[bytes], file))
else:
fileformat = "pickle"
with open(filename, "rb") as file:
instance = pickle.load(cast(IO[bytes], file))
assert isinstance(instance, Instance)
# Generate model
if model is None:
with _RedirectOutput([]):
@@ -262,23 +237,15 @@ class LearningSolver:
component.after_solve_mip(*callback_args)
# Write to file, if necessary
if not discard_output and filename is not None:
if output_filename is None:
output_filename = filename
logger.info("Writing: %s" % output_filename)
if fileformat == "pickle":
with open(output_filename, "wb") as file:
pickle.dump(instance, cast(IO[bytes], file))
else:
with gzip.GzipFile(output_filename, "wb") as file:
pickle.dump(instance, cast(IO[bytes], file))
if not discard_output:
instance.flush()
return stats
def solve(
self,
instance: Union[Instance, str],
instance: Instance,
model: Any = None,
output_filename: Optional[str] = None,
discard_output: bool = False,
tee: bool = False,
) -> LearningSolveStats:
@@ -298,14 +265,10 @@ class LearningSolver:
Parameters
----------
instance: Union[Instance, str]
The instance to be solved, or a filename.
instance: Instance
The instance to be solved.
model: Any
The corresponding Pyomo model. If not provided, it will be created.
output_filename: Optional[str]
If instance is a filename and output_filename is provided, write the
modified instance to this file, instead of replacing the original one. If
output_filename is None (the default), modified the original file in-place.
discard_output: bool
If True, do not write the modified instances anywhere; simply discard
them. Useful during benchmarking.
@@ -325,30 +288,28 @@ class LearningSolver:
details.
"""
if self.simulate_perfect:
if not isinstance(instance, str):
if not isinstance(instance, PickleGzInstance):
raise Exception("Not implemented")
with tempfile.NamedTemporaryFile(suffix=os.path.basename(instance)) as tmp:
self._solve(
instance=instance,
model=model,
output_filename=tmp.name,
tee=tee,
)
self.fit([tmp.name])
self._solve(
instance=instance,
model=model,
tee=tee,
discard_output=True,
)
self.fit([instance])
instance.instance = None
return self._solve(
instance=instance,
model=model,
output_filename=output_filename,
discard_output=discard_output,
tee=tee,
)
def parallel_solve(
self,
instances: Union[List[str], List[Instance]],
instances: List[Instance],
n_jobs: int = 4,
label: str = "Solve",
output_filenames: Optional[List[str]] = None,
discard_outputs: bool = False,
) -> List[LearningSolveStats]:
"""
@@ -361,17 +322,13 @@ class LearningSolver:
Parameters
----------
output_filenames: Optional[List[str]]
If instances are file names and output_filenames is provided, write the
modified instances to these files, instead of replacing the original
files. If output_filenames is None, modifies the instances in-place.
discard_outputs: bool
If True, do not write the modified instances anywhere; simply discard
them instead. Useful during benchmarking.
label: str
Label to show in the progress bar.
instances: Union[List[str], List[Instance]]
The instances to be solved
instances: List[Instance]
The instances to be solved.
n_jobs: int
Number of instances to solve in parallel at a time.
@@ -388,7 +345,6 @@ class LearningSolver:
self.internal_solver = None
self._silence_miplearn_logger()
_GLOBAL[0].solver = self
_GLOBAL[0].output_filenames = output_filenames
_GLOBAL[0].instances = instances
_GLOBAL[0].discard_outputs = discard_outputs
results = p_map(
@@ -405,7 +361,7 @@ class LearningSolver:
self._restore_miplearn_logger()
return stats
def fit(self, training_instances: Union[List[str], List[Instance]]) -> None:
def fit(self, training_instances: List[Instance]) -> None:
logger.debug("Fitting...")
if len(training_instances) == 0:
return