Use np.ndarray in Variables

This commit is contained in:
2021-08-05 15:42:19 -05:00
parent b6426462a1
commit 0c4b0ea81a
10 changed files with 110 additions and 66 deletions

View File

@@ -9,6 +9,7 @@ from scipy.stats import uniform, randint
from miplearn.problems.tsp import TravelingSalesmanGenerator, TravelingSalesmanInstance
from miplearn.solvers.learning import LearningSolver
from miplearn.solvers.tests import assert_equals
def test_generator() -> None:
@@ -41,7 +42,7 @@ def test_instance() -> None:
solver.solve(instance)
assert len(instance.get_samples()) == 1
sample = instance.get_samples()[0]
assert sample.get_vector("mip_var_values") == [1.0, 0.0, 1.0, 1.0, 0.0, 1.0]
assert_equals(sample.get_vector("mip_var_values"), [1.0, 0.0, 1.0, 1.0, 0.0, 1.0])
assert sample.get_scalar("mip_lower_bound") == 4.0
assert sample.get_scalar("mip_upper_bound") == 4.0
@@ -68,22 +69,25 @@ def test_subtour() -> None:
lazy_enforced = sample.get_set("mip_constr_lazy_enforced")
assert lazy_enforced is not None
assert len(lazy_enforced) > 0
assert sample.get_vector("mip_var_values") == [
1.0,
0.0,
0.0,
1.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
1.0,
]
assert_equals(
sample.get_vector("mip_var_values"),
[
1.0,
0.0,
0.0,
1.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
1.0,
1.0,
],
)
solver.fit([instance])
solver.solve(instance)