mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Make all before/solve callbacks receive same parameters
This commit is contained in:
@@ -45,8 +45,23 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
||||
self.check_optimality = check_optimality
|
||||
self.converted = []
|
||||
self.original_sense = {}
|
||||
self.n_restored = 0
|
||||
self.n_infeasible_iterations = 0
|
||||
self.n_suboptimal_iterations = 0
|
||||
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
features,
|
||||
training_data,
|
||||
):
|
||||
self.n_restored = 0
|
||||
self.n_infeasible_iterations = 0
|
||||
self.n_suboptimal_iterations = 0
|
||||
|
||||
def before_solve_mip(self, solver, instance, _):
|
||||
logger.info("Predicting tight LP constraints...")
|
||||
x, constraints = DropRedundantInequalitiesStep.x(
|
||||
instance,
|
||||
@@ -54,11 +69,8 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
||||
)
|
||||
y = self.predict(x)
|
||||
|
||||
self.n_converted = 0
|
||||
self.n_restored = 0
|
||||
self.n_kept = 0
|
||||
self.n_infeasible_iterations = 0
|
||||
self.n_suboptimal_iterations = 0
|
||||
n_converted = 0
|
||||
n_kept = 0
|
||||
for category in y.keys():
|
||||
for i in range(len(y[category])):
|
||||
if y[category][i][0] == 1:
|
||||
@@ -67,11 +79,13 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
||||
self.original_sense[cid] = s
|
||||
solver.internal_solver.set_constraint_sense(cid, "=")
|
||||
self.converted += [cid]
|
||||
self.n_converted += 1
|
||||
n_converted += 1
|
||||
else:
|
||||
self.n_kept += 1
|
||||
n_kept += 1
|
||||
stats["ConvertTight: Kept"] = n_kept
|
||||
stats["ConvertTight: Converted"] = n_converted
|
||||
|
||||
logger.info(f"Converted {self.n_converted} inequalities")
|
||||
logger.info(f"Converted {n_converted} inequalities")
|
||||
|
||||
def after_solve_mip(
|
||||
self,
|
||||
@@ -79,12 +93,11 @@ class ConvertTightIneqsIntoEqsStep(Component):
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
features,
|
||||
training_data,
|
||||
):
|
||||
if "slacks" not in training_data.keys():
|
||||
training_data["slacks"] = solver.internal_solver.get_inequality_slacks()
|
||||
stats["ConvertTight: Kept"] = self.n_kept
|
||||
stats["ConvertTight: Converted"] = self.n_converted
|
||||
stats["ConvertTight: Restored"] = self.n_restored
|
||||
stats["ConvertTight: Inf iterations"] = self.n_infeasible_iterations
|
||||
stats["ConvertTight: Subopt iterations"] = self.n_suboptimal_iterations
|
||||
|
||||
@@ -46,12 +46,20 @@ class DropRedundantInequalitiesStep(Component):
|
||||
self.violation_tolerance = violation_tolerance
|
||||
self.max_iterations = max_iterations
|
||||
self.current_iteration = 0
|
||||
self.total_dropped = 0
|
||||
self.total_restored = 0
|
||||
self.total_kept = 0
|
||||
self.total_iterations = 0
|
||||
self.n_iterations = 0
|
||||
self.n_restored = 0
|
||||
|
||||
def before_solve_mip(self, solver, instance, _):
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
features,
|
||||
training_data,
|
||||
):
|
||||
self.n_iterations = 0
|
||||
self.n_restored = 0
|
||||
self.current_iteration = 0
|
||||
|
||||
logger.info("Predicting redundant LP constraints...")
|
||||
@@ -62,10 +70,8 @@ class DropRedundantInequalitiesStep(Component):
|
||||
y = self.predict(x)
|
||||
|
||||
self.pool = []
|
||||
self.total_dropped = 0
|
||||
self.total_restored = 0
|
||||
self.total_kept = 0
|
||||
self.total_iterations = 0
|
||||
n_dropped = 0
|
||||
n_kept = 0
|
||||
for category in y.keys():
|
||||
for i in range(len(y[category])):
|
||||
if y[category][i][1] == 1:
|
||||
@@ -75,10 +81,12 @@ class DropRedundantInequalitiesStep(Component):
|
||||
obj=solver.internal_solver.extract_constraint(cid),
|
||||
)
|
||||
self.pool += [c]
|
||||
self.total_dropped += 1
|
||||
n_dropped += 1
|
||||
else:
|
||||
self.total_kept += 1
|
||||
logger.info(f"Extracted {self.total_dropped} predicted constraints")
|
||||
n_kept += 1
|
||||
stats["DropRedundant: Kept"] = n_kept
|
||||
stats["DropRedundant: Dropped"] = n_dropped
|
||||
logger.info(f"Extracted {n_dropped} predicted constraints")
|
||||
|
||||
def after_solve_mip(
|
||||
self,
|
||||
@@ -86,18 +94,13 @@ class DropRedundantInequalitiesStep(Component):
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
features,
|
||||
training_data,
|
||||
):
|
||||
if "slacks" not in training_data.keys():
|
||||
training_data["slacks"] = solver.internal_solver.get_inequality_slacks()
|
||||
stats.update(
|
||||
{
|
||||
"DropRedundant: Kept": self.total_kept,
|
||||
"DropRedundant: Dropped": self.total_dropped,
|
||||
"DropRedundant: Restored": self.total_restored,
|
||||
"DropRedundant: Iterations": self.total_iterations,
|
||||
}
|
||||
)
|
||||
stats["DropRedundant: Iterations"] = self.n_iterations
|
||||
stats["DropRedundant: Restored"] = self.n_restored
|
||||
|
||||
def fit(self, training_instances, n_jobs=1):
|
||||
x, y = self.x_y(training_instances, n_jobs=n_jobs)
|
||||
@@ -234,12 +237,12 @@ class DropRedundantInequalitiesStep(Component):
|
||||
self.pool.remove(c)
|
||||
solver.internal_solver.add_constraint(c.obj)
|
||||
if len(constraints_to_add) > 0:
|
||||
self.total_restored += len(constraints_to_add)
|
||||
self.n_restored += len(constraints_to_add)
|
||||
logger.info(
|
||||
"%8d constraints %8d in the pool"
|
||||
% (len(constraints_to_add), len(self.pool))
|
||||
)
|
||||
self.total_iterations += 1
|
||||
self.n_iterations += 1
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
@@ -14,16 +14,14 @@ class RelaxIntegralityStep(Component):
|
||||
Component that relaxes all integrality constraints before the problem is solved.
|
||||
"""
|
||||
|
||||
def before_solve_mip(self, solver, instance, _):
|
||||
logger.info("Relaxing integrality...")
|
||||
solver.internal_solver.relax()
|
||||
|
||||
def after_solve_mip(
|
||||
def before_solve_mip(
|
||||
self,
|
||||
solver,
|
||||
instance,
|
||||
model,
|
||||
stats,
|
||||
features,
|
||||
training_data,
|
||||
):
|
||||
return
|
||||
logger.info("Relaxing integrality...")
|
||||
solver.internal_solver.relax()
|
||||
|
||||
Reference in New Issue
Block a user