mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 01:18:52 -06:00
Don't include intermediary features in sample; rename some keys
This commit is contained in:
@@ -52,7 +52,7 @@ class DynamicConstraintsComponent(Component):
|
||||
cids: Dict[str, List[str]] = {}
|
||||
constr_categories_dict = instance.get_constraint_categories()
|
||||
constr_features_dict = instance.get_constraint_features()
|
||||
instance_features = sample.get_vector("instance_features_user")
|
||||
instance_features = sample.get_vector("instance_features")
|
||||
assert instance_features is not None
|
||||
for cid in self.known_cids:
|
||||
# Initialize categories
|
||||
|
||||
@@ -79,7 +79,7 @@ class ObjectiveValueComponent(Component):
|
||||
) -> Tuple[Dict[str, List[List[float]]], Dict[str, List[List[float]]]]:
|
||||
lp_instance_features = sample.get_vector("lp_instance_features")
|
||||
if lp_instance_features is None:
|
||||
lp_instance_features = sample.get_vector("instance_features_user")
|
||||
lp_instance_features = sample.get_vector("instance_features")
|
||||
assert lp_instance_features is not None
|
||||
|
||||
# Features
|
||||
|
||||
@@ -142,7 +142,7 @@ class PrimalSolutionComponent(Component):
|
||||
) -> Tuple[Dict[Category, List[List[float]]], Dict[Category, List[List[float]]]]:
|
||||
x: Dict = {}
|
||||
y: Dict = {}
|
||||
instance_features = sample.get_vector("instance_features_user")
|
||||
instance_features = sample.get_vector("instance_features")
|
||||
mip_var_values = sample.get_vector("mip_var_values")
|
||||
var_features = sample.get_vector_list("lp_var_features")
|
||||
var_names = sample.get_vector("var_names")
|
||||
|
||||
@@ -204,14 +204,14 @@ class StaticLazyConstraintsComponent(Component):
|
||||
x: Dict[str, List[List[float]]] = {}
|
||||
y: Dict[str, List[List[float]]] = {}
|
||||
cids: Dict[str, List[str]] = {}
|
||||
instance_features = sample.get_vector("instance_features_user")
|
||||
instance_features = sample.get_vector("instance_features")
|
||||
constr_features = sample.get_vector_list("lp_constr_features")
|
||||
constr_names = sample.get_vector("constr_names")
|
||||
constr_categories = sample.get_vector("constr_categories")
|
||||
constr_lazy = sample.get_vector("constr_lazy")
|
||||
lazy_enforced = sample.get_set("lazy_enforced")
|
||||
if constr_features is None:
|
||||
constr_features = sample.get_vector_list("constr_features_user")
|
||||
constr_features = sample.get_vector_list("constr_features")
|
||||
|
||||
assert instance_features is not None
|
||||
assert constr_features is not None
|
||||
|
||||
@@ -5,7 +5,7 @@
|
||||
import collections
|
||||
import numbers
|
||||
from math import log, isfinite
|
||||
from typing import TYPE_CHECKING, Dict, Optional, List, Any
|
||||
from typing import TYPE_CHECKING, Dict, Optional, List, Any, Tuple
|
||||
|
||||
import numpy as np
|
||||
|
||||
@@ -42,16 +42,19 @@ class FeaturesExtractor:
|
||||
# sample.put("constr_lhs", constraints.lhs)
|
||||
sample.put_vector("constr_rhs", constraints.rhs)
|
||||
sample.put_vector("constr_senses", constraints.senses)
|
||||
self._extract_user_features_vars(instance, sample)
|
||||
vars_features_user, var_categories = self._extract_user_features_vars(
|
||||
instance, sample
|
||||
)
|
||||
sample.put_vector("var_categories", var_categories)
|
||||
self._extract_user_features_constrs(instance, sample)
|
||||
self._extract_user_features_instance(instance, sample)
|
||||
self._extract_var_features_AlvLouWeh2017(sample)
|
||||
alw17 = self._extract_var_features_AlvLouWeh2017(sample)
|
||||
sample.put_vector_list(
|
||||
"var_features",
|
||||
self._combine(
|
||||
[
|
||||
sample.get_vector_list("var_features_AlvLouWeh2017"),
|
||||
sample.get_vector_list("var_features_user"),
|
||||
alw17,
|
||||
vars_features_user,
|
||||
sample.get_vector("var_lower_bounds"),
|
||||
sample.get_vector("var_obj_coeffs"),
|
||||
sample.get_vector("var_upper_bounds"),
|
||||
@@ -80,12 +83,12 @@ class FeaturesExtractor:
|
||||
sample.put_vector("lp_constr_sa_rhs_down", constraints.sa_rhs_down)
|
||||
sample.put_vector("lp_constr_sa_rhs_up", constraints.sa_rhs_up)
|
||||
sample.put_vector("lp_constr_slacks", constraints.slacks)
|
||||
self._extract_var_features_AlvLouWeh2017(sample, prefix="lp_")
|
||||
alw17 = self._extract_var_features_AlvLouWeh2017(sample)
|
||||
sample.put_vector_list(
|
||||
"lp_var_features",
|
||||
self._combine(
|
||||
[
|
||||
sample.get_vector_list("lp_var_features_AlvLouWeh2017"),
|
||||
alw17,
|
||||
sample.get_vector("lp_var_reduced_costs"),
|
||||
sample.get_vector("lp_var_sa_lb_down"),
|
||||
sample.get_vector("lp_var_sa_lb_up"),
|
||||
@@ -105,7 +108,7 @@ class FeaturesExtractor:
|
||||
"lp_constr_features",
|
||||
self._combine(
|
||||
[
|
||||
sample.get_vector_list("constr_features_user"),
|
||||
sample.get_vector_list("constr_features"),
|
||||
sample.get_vector("lp_constr_dual_values"),
|
||||
sample.get_vector("lp_constr_sa_rhs_down"),
|
||||
sample.get_vector("lp_constr_sa_rhs_up"),
|
||||
@@ -113,11 +116,11 @@ class FeaturesExtractor:
|
||||
],
|
||||
),
|
||||
)
|
||||
instance_features_user = sample.get_vector("instance_features_user")
|
||||
assert instance_features_user is not None
|
||||
instance_features = sample.get_vector("instance_features")
|
||||
assert instance_features is not None
|
||||
sample.put_vector(
|
||||
"lp_instance_features",
|
||||
instance_features_user
|
||||
instance_features
|
||||
+ [
|
||||
sample.get_scalar("lp_value"),
|
||||
sample.get_scalar("lp_wallclock_time"),
|
||||
@@ -138,7 +141,7 @@ class FeaturesExtractor:
|
||||
self,
|
||||
instance: "Instance",
|
||||
sample: Sample,
|
||||
) -> None:
|
||||
) -> Tuple[List, List]:
|
||||
categories: List[Optional[str]] = []
|
||||
user_features: List[Optional[List[float]]] = []
|
||||
var_features_dict = instance.get_variable_features()
|
||||
@@ -174,8 +177,7 @@ class FeaturesExtractor:
|
||||
)
|
||||
user_features_i = list(user_features_i)
|
||||
user_features.append(user_features_i)
|
||||
sample.put_vector("var_categories", categories)
|
||||
sample.put_vector_list("var_features_user", user_features)
|
||||
return user_features, categories
|
||||
|
||||
def _extract_user_features_constrs(
|
||||
self,
|
||||
@@ -224,7 +226,7 @@ class FeaturesExtractor:
|
||||
lazy.append(instance.is_constraint_lazy(cname))
|
||||
else:
|
||||
lazy.append(False)
|
||||
sample.put_vector_list("constr_features_user", user_features)
|
||||
sample.put_vector_list("constr_features", user_features)
|
||||
sample.put_vector("constr_lazy", lazy)
|
||||
sample.put_vector("constr_categories", categories)
|
||||
|
||||
@@ -247,16 +249,12 @@ class FeaturesExtractor:
|
||||
)
|
||||
constr_lazy = sample.get_vector("constr_lazy")
|
||||
assert constr_lazy is not None
|
||||
sample.put_vector("instance_features_user", user_features)
|
||||
sample.put_vector("instance_features", user_features)
|
||||
sample.put_scalar("static_lazy_count", sum(constr_lazy))
|
||||
|
||||
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
|
||||
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
|
||||
def _extract_var_features_AlvLouWeh2017(
|
||||
self,
|
||||
sample: Sample,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
def _extract_var_features_AlvLouWeh2017(self, sample: Sample) -> List:
|
||||
obj_coeffs = sample.get_vector("var_obj_coeffs")
|
||||
obj_sa_down = sample.get_vector("lp_var_sa_obj_down")
|
||||
obj_sa_up = sample.get_vector("lp_var_sa_obj_up")
|
||||
@@ -328,7 +326,7 @@ class FeaturesExtractor:
|
||||
for v in f:
|
||||
assert isfinite(v), f"non-finite elements detected: {f}"
|
||||
features.append(f)
|
||||
sample.put_vector_list(f"{prefix}var_features_AlvLouWeh2017", features)
|
||||
return features
|
||||
|
||||
def _combine(
|
||||
self,
|
||||
|
||||
Reference in New Issue
Block a user