mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Implement GurobiSolver (without Pyomo)
This commit is contained in:
@@ -25,5 +25,6 @@ from .instance import Instance
|
|||||||
from .solvers.pyomo.base import BasePyomoSolver
|
from .solvers.pyomo.base import BasePyomoSolver
|
||||||
from .solvers.pyomo.cplex import CplexPyomoSolver
|
from .solvers.pyomo.cplex import CplexPyomoSolver
|
||||||
from .solvers.pyomo.gurobi import GurobiPyomoSolver
|
from .solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||||
|
from .solvers.guroby import GurobiSolver
|
||||||
from .solvers.internal import InternalSolver
|
from .solvers.internal import InternalSolver
|
||||||
from .solvers.learning import LearningSolver
|
from .solvers.learning import LearningSolver
|
||||||
|
|||||||
@@ -6,11 +6,11 @@ from unittest.mock import Mock
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from miplearn import BranchPriorityComponent, BranchPriorityExtractor
|
from miplearn import BranchPriorityComponent, BranchPriorityExtractor
|
||||||
from miplearn.classifiers import Regressor
|
from miplearn.classifiers import Regressor
|
||||||
from miplearn.tests import get_training_instances_and_models
|
from miplearn.tests import get_test_pyomo_instances
|
||||||
|
|
||||||
|
|
||||||
def test_branch_extract():
|
def test_branch_extract():
|
||||||
instances, models = get_training_instances_and_models()
|
instances, models = get_test_pyomo_instances()
|
||||||
instances[0].branch_priorities = {"x": {0: 100, 1: 200, 2: 300, 3: 400}}
|
instances[0].branch_priorities = {"x": {0: 100, 1: 200, 2: 300, 3: 400}}
|
||||||
instances[1].branch_priorities = {"x": {0: 150, 1: 250, 2: 350, 3: 450}}
|
instances[1].branch_priorities = {"x": {0: 150, 1: 250, 2: 350, 3: 450}}
|
||||||
priorities = BranchPriorityExtractor().extract(instances)
|
priorities = BranchPriorityExtractor().extract(instances)
|
||||||
@@ -18,7 +18,7 @@ def test_branch_extract():
|
|||||||
|
|
||||||
|
|
||||||
def test_branch_calculate():
|
def test_branch_calculate():
|
||||||
instances, models = get_training_instances_and_models()
|
instances, models = get_test_pyomo_instances()
|
||||||
comp = BranchPriorityComponent()
|
comp = BranchPriorityComponent()
|
||||||
|
|
||||||
# If instances do not have branch_priority property, fit should compute them
|
# If instances do not have branch_priority property, fit should compute them
|
||||||
@@ -32,7 +32,7 @@ def test_branch_calculate():
|
|||||||
|
|
||||||
|
|
||||||
def test_branch_x_y_predict():
|
def test_branch_x_y_predict():
|
||||||
instances, models = get_training_instances_and_models()
|
instances, models = get_test_pyomo_instances()
|
||||||
instances[0].branch_priorities = {"x": {0: 100, 1: 200, 2: 300, 3: 400}}
|
instances[0].branch_priorities = {"x": {0: 100, 1: 200, 2: 300, 3: 400}}
|
||||||
instances[1].branch_priorities = {"x": {0: 150, 1: 250, 2: 350, 3: 450}}
|
instances[1].branch_priorities = {"x": {0: 150, 1: 250, 2: 350, 3: 450}}
|
||||||
comp = BranchPriorityComponent()
|
comp = BranchPriorityComponent()
|
||||||
|
|||||||
@@ -7,14 +7,14 @@ from unittest.mock import Mock
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from miplearn import LazyConstraintsComponent, LearningSolver, InternalSolver
|
from miplearn import LazyConstraintsComponent, LearningSolver, InternalSolver
|
||||||
from miplearn.classifiers import Classifier
|
from miplearn.classifiers import Classifier
|
||||||
from miplearn.tests import get_training_instances_and_models
|
from miplearn.tests import get_test_pyomo_instances
|
||||||
from numpy.linalg import norm
|
from numpy.linalg import norm
|
||||||
|
|
||||||
E = 0.1
|
E = 0.1
|
||||||
|
|
||||||
|
|
||||||
def test_lazy_fit():
|
def test_lazy_fit():
|
||||||
instances, models = get_training_instances_and_models()
|
instances, models = get_test_pyomo_instances()
|
||||||
instances[0].found_violated_lazy_constraints = ["a", "b"]
|
instances[0].found_violated_lazy_constraints = ["a", "b"]
|
||||||
instances[1].found_violated_lazy_constraints = ["b", "c"]
|
instances[1].found_violated_lazy_constraints = ["b", "c"]
|
||||||
classifier = Mock(spec=Classifier)
|
classifier = Mock(spec=Classifier)
|
||||||
@@ -51,7 +51,7 @@ def test_lazy_fit():
|
|||||||
|
|
||||||
|
|
||||||
def test_lazy_before():
|
def test_lazy_before():
|
||||||
instances, models = get_training_instances_and_models()
|
instances, models = get_test_pyomo_instances()
|
||||||
instances[0].build_lazy_constraint = Mock(return_value="c1")
|
instances[0].build_lazy_constraint = Mock(return_value="c1")
|
||||||
solver = LearningSolver()
|
solver = LearningSolver()
|
||||||
solver.internal_solver = Mock(spec=InternalSolver)
|
solver.internal_solver = Mock(spec=InternalSolver)
|
||||||
@@ -80,7 +80,7 @@ def test_lazy_before():
|
|||||||
|
|
||||||
|
|
||||||
def test_lazy_evaluate():
|
def test_lazy_evaluate():
|
||||||
instances, models = get_training_instances_and_models()
|
instances, models = get_test_pyomo_instances()
|
||||||
component = LazyConstraintsComponent()
|
component = LazyConstraintsComponent()
|
||||||
component.classifiers = {"a": Mock(spec=Classifier),
|
component.classifiers = {"a": Mock(spec=Classifier),
|
||||||
"b": Mock(spec=Classifier),
|
"b": Mock(spec=Classifier),
|
||||||
|
|||||||
@@ -7,11 +7,11 @@ from unittest.mock import Mock
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from miplearn import ObjectiveValueComponent
|
from miplearn import ObjectiveValueComponent
|
||||||
from miplearn.classifiers import Regressor
|
from miplearn.classifiers import Regressor
|
||||||
from miplearn.tests import get_training_instances_and_models
|
from miplearn.tests import get_test_pyomo_instances
|
||||||
|
|
||||||
|
|
||||||
def test_usage():
|
def test_usage():
|
||||||
instances, models = get_training_instances_and_models()
|
instances, models = get_test_pyomo_instances()
|
||||||
comp = ObjectiveValueComponent()
|
comp = ObjectiveValueComponent()
|
||||||
comp.fit(instances)
|
comp.fit(instances)
|
||||||
assert instances[0].lower_bound == 1183.0
|
assert instances[0].lower_bound == 1183.0
|
||||||
@@ -21,7 +21,7 @@ def test_usage():
|
|||||||
|
|
||||||
|
|
||||||
def test_obj_evaluate():
|
def test_obj_evaluate():
|
||||||
instances, models = get_training_instances_and_models()
|
instances, models = get_test_pyomo_instances()
|
||||||
reg = Mock(spec=Regressor)
|
reg = Mock(spec=Regressor)
|
||||||
reg.predict = Mock(return_value=np.array([1000.0, 1000.0]))
|
reg.predict = Mock(return_value=np.array([1000.0, 1000.0]))
|
||||||
comp = ObjectiveValueComponent(regressor=reg)
|
comp = ObjectiveValueComponent(regressor=reg)
|
||||||
|
|||||||
@@ -7,11 +7,11 @@ from unittest.mock import Mock
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from miplearn import PrimalSolutionComponent
|
from miplearn import PrimalSolutionComponent
|
||||||
from miplearn.classifiers import Classifier
|
from miplearn.classifiers import Classifier
|
||||||
from miplearn.tests import get_training_instances_and_models
|
from miplearn.tests import get_test_pyomo_instances
|
||||||
|
|
||||||
|
|
||||||
def test_predict():
|
def test_predict():
|
||||||
instances, models = get_training_instances_and_models()
|
instances, models = get_test_pyomo_instances()
|
||||||
comp = PrimalSolutionComponent()
|
comp = PrimalSolutionComponent()
|
||||||
comp.fit(instances)
|
comp.fit(instances)
|
||||||
solution = comp.predict(instances[0])
|
solution = comp.predict(instances[0])
|
||||||
@@ -23,7 +23,7 @@ def test_predict():
|
|||||||
|
|
||||||
|
|
||||||
def test_evaluate():
|
def test_evaluate():
|
||||||
instances, models = get_training_instances_and_models()
|
instances, models = get_test_pyomo_instances()
|
||||||
clf_zero = Mock(spec=Classifier)
|
clf_zero = Mock(spec=Classifier)
|
||||||
clf_zero.predict_proba = Mock(return_value=np.array([
|
clf_zero.predict_proba = Mock(return_value=np.array([
|
||||||
[0., 1.], # x[0]
|
[0., 1.], # x[0]
|
||||||
@@ -93,7 +93,7 @@ def test_evaluate():
|
|||||||
|
|
||||||
|
|
||||||
def test_primal_parallel_fit():
|
def test_primal_parallel_fit():
|
||||||
instances, models = get_training_instances_and_models()
|
instances, models = get_test_pyomo_instances()
|
||||||
comp = PrimalSolutionComponent()
|
comp = PrimalSolutionComponent()
|
||||||
comp.fit(instances, n_jobs=2)
|
comp.fit(instances, n_jobs=2)
|
||||||
assert len(comp.classifiers) == 2
|
assert len(comp.classifiers) == 2
|
||||||
|
|||||||
@@ -251,3 +251,25 @@ class KnapsackInstance(Instance):
|
|||||||
self.weights[index],
|
self.weights[index],
|
||||||
self.prices[index],
|
self.prices[index],
|
||||||
])
|
])
|
||||||
|
|
||||||
|
|
||||||
|
class GurobiKnapsackInstance(KnapsackInstance):
|
||||||
|
"""
|
||||||
|
Simpler (one-dimensional) knapsack instance, implemented directly in Gurobi
|
||||||
|
instead of Pyomo, used for testing.
|
||||||
|
"""
|
||||||
|
def __init__(self, weights, prices, capacity):
|
||||||
|
super().__init__(weights, prices, capacity)
|
||||||
|
|
||||||
|
def to_model(self):
|
||||||
|
import gurobipy as gp
|
||||||
|
from gurobipy import GRB
|
||||||
|
|
||||||
|
model = gp.Model("Knapsack")
|
||||||
|
n = len(self.weights)
|
||||||
|
x = model.addVars(n, vtype=GRB.BINARY, name="x")
|
||||||
|
model.addConstr(gp.quicksum(x[i] * self.weights[i]
|
||||||
|
for i in range(n)) <= self.capacity)
|
||||||
|
model.setObjective(gp.quicksum(x[i] * self.prices[i]
|
||||||
|
for i in range(n)), GRB.MAXIMIZE)
|
||||||
|
return model
|
||||||
|
|||||||
202
src/python/miplearn/solvers/guroby.py
Normal file
202
src/python/miplearn/solvers/guroby.py
Normal file
@@ -0,0 +1,202 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
import re
|
||||||
|
import sys
|
||||||
|
import logging
|
||||||
|
from io import StringIO
|
||||||
|
|
||||||
|
from . import RedirectOutput
|
||||||
|
from .internal import InternalSolver
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class GurobiSolver(InternalSolver):
|
||||||
|
def __init__(self, params=None):
|
||||||
|
if params is None:
|
||||||
|
params = {
|
||||||
|
"LazyConstraints": 1,
|
||||||
|
"PreCrush": 1,
|
||||||
|
}
|
||||||
|
from gurobipy import GRB
|
||||||
|
self.GRB = GRB
|
||||||
|
self.instance = None
|
||||||
|
self.model = None
|
||||||
|
self.params = params
|
||||||
|
self._all_vars = None
|
||||||
|
self._bin_vars = None
|
||||||
|
self._varname_to_var = None
|
||||||
|
|
||||||
|
def set_instance(self, instance, model=None):
|
||||||
|
if model is None:
|
||||||
|
model = instance.to_model()
|
||||||
|
self.instance = instance
|
||||||
|
self.model = model
|
||||||
|
self.model.update()
|
||||||
|
self._update_vars()
|
||||||
|
|
||||||
|
def _update_vars(self):
|
||||||
|
self._all_vars = {}
|
||||||
|
self._bin_vars = {}
|
||||||
|
for var in self.model.getVars():
|
||||||
|
m = re.search(r"([^[]*)\[(.*)\]", var.varName)
|
||||||
|
if m is None:
|
||||||
|
name = var.varName
|
||||||
|
idx = [0]
|
||||||
|
else:
|
||||||
|
name = m.group(1)
|
||||||
|
idx = tuple(int(k) if k.isdecimal() else k
|
||||||
|
for k in m.group(2).split(","))
|
||||||
|
if len(idx) == 1:
|
||||||
|
idx = idx[0]
|
||||||
|
if name not in self._all_vars:
|
||||||
|
self._all_vars[name] = {}
|
||||||
|
self._all_vars[name][idx] = var
|
||||||
|
if var.vtype != 'C':
|
||||||
|
if name not in self._bin_vars:
|
||||||
|
self._bin_vars[name] = {}
|
||||||
|
self._bin_vars[name][idx] = var
|
||||||
|
|
||||||
|
def _apply_params(self):
|
||||||
|
for (name, value) in self.params.items():
|
||||||
|
self.model.setParam(name, value)
|
||||||
|
|
||||||
|
def solve_lp(self, tee=False):
|
||||||
|
self._apply_params()
|
||||||
|
streams = [StringIO()]
|
||||||
|
if tee:
|
||||||
|
streams += [sys.stdout]
|
||||||
|
for (varname, vardict) in self._bin_vars.items():
|
||||||
|
for (idx, var) in vardict.items():
|
||||||
|
var.vtype = self.GRB.CONTINUOUS
|
||||||
|
var.lb = 0.0
|
||||||
|
var.ub = 1.0
|
||||||
|
with RedirectOutput(streams):
|
||||||
|
self.model.optimize()
|
||||||
|
for (varname, vardict) in self._bin_vars.items():
|
||||||
|
for (idx, var) in vardict.items():
|
||||||
|
var.vtype = self.GRB.BINARY
|
||||||
|
log = streams[0].getvalue()
|
||||||
|
return {
|
||||||
|
"Optimal value": self.model.objVal,
|
||||||
|
"Log": log
|
||||||
|
}
|
||||||
|
|
||||||
|
def solve(self, tee=False):
|
||||||
|
all_vars = self.model.getVars()
|
||||||
|
self.instance.found_violated_lazy_constraints = []
|
||||||
|
self.instance.found_violated_user_cuts = []
|
||||||
|
streams = [StringIO()]
|
||||||
|
if tee:
|
||||||
|
streams += [sys.stdout]
|
||||||
|
|
||||||
|
def cb(cb_model, cb_where):
|
||||||
|
try:
|
||||||
|
# User cuts
|
||||||
|
if cb_where == self.GRB.Callback.MIPNODE:
|
||||||
|
logger.debug("Finding violated cutting planes...")
|
||||||
|
violations = self.instance.find_violated_user_cuts(cb_model)
|
||||||
|
self.instance.found_violated_user_cuts += violations
|
||||||
|
logger.debug(" %d found" % len(violations))
|
||||||
|
for v in violations:
|
||||||
|
cut = self.instance.build_user_cut(cb_model, v)
|
||||||
|
cb_model.cbCut(cut)
|
||||||
|
|
||||||
|
# Lazy constraints
|
||||||
|
if cb_where == self.GRB.Callback.MIPSOL:
|
||||||
|
logger.debug("Finding violated lazy constraints...")
|
||||||
|
violations = self.instance.find_violated_lazy_constraints(cb_model)
|
||||||
|
self.instance.found_violated_lazy_constraints += violations
|
||||||
|
logger.debug(" %d found" % len(violations))
|
||||||
|
for v in violations:
|
||||||
|
cut = self.instance.build_lazy_constraint(cb_model, v)
|
||||||
|
cb_model.cbLazy(cut)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(e)
|
||||||
|
|
||||||
|
with RedirectOutput(streams):
|
||||||
|
self.model.optimize(cb)
|
||||||
|
log = streams[0].getvalue()
|
||||||
|
return {
|
||||||
|
"Lower bound": self.model.objVal,
|
||||||
|
"Upper bound": self.model.objBound,
|
||||||
|
"Wallclock time": self.model.runtime,
|
||||||
|
"Nodes": int(self.model.nodeCount),
|
||||||
|
"Sense": ("min" if self.model.modelSense == 1 else "max"),
|
||||||
|
"Log": log,
|
||||||
|
"Warm start value": self._extract_warm_start_value(log),
|
||||||
|
}
|
||||||
|
|
||||||
|
def get_solution(self):
|
||||||
|
solution = {}
|
||||||
|
for (varname, vardict) in self._all_vars.items():
|
||||||
|
solution[varname] = {}
|
||||||
|
for (idx, var) in vardict.items():
|
||||||
|
solution[varname][idx] = var.x
|
||||||
|
return solution
|
||||||
|
|
||||||
|
def add_constraint(self, constraint):
|
||||||
|
self.model.addConstr(constraint)
|
||||||
|
|
||||||
|
def set_warm_start(self, solution):
|
||||||
|
count_fixed, count_total = 0, 0
|
||||||
|
for (varname, vardict) in solution.items():
|
||||||
|
for (idx, value) in vardict.items():
|
||||||
|
count_total += 1
|
||||||
|
if value is not None:
|
||||||
|
count_fixed += 1
|
||||||
|
self._all_vars[varname][idx].start = value
|
||||||
|
logger.info("Setting start values for %d variables (out of %d)" %
|
||||||
|
(count_fixed, count_total))
|
||||||
|
|
||||||
|
def clear_warm_start(self):
|
||||||
|
for (varname, vardict) in self._all_vars:
|
||||||
|
for (idx, var) in vardict.items():
|
||||||
|
var[idx].start = self.GRB.UNDEFINED
|
||||||
|
|
||||||
|
def fix(self, solution):
|
||||||
|
for (varname, vardict) in solution.items():
|
||||||
|
for (idx, value) in vardict.items():
|
||||||
|
if value is None:
|
||||||
|
continue
|
||||||
|
var = self._all_vars[varname][idx]
|
||||||
|
var.vtype = self.GRB.CONTINUOUS
|
||||||
|
var.lb = value
|
||||||
|
var.ub = value
|
||||||
|
|
||||||
|
def set_branching_priorities(self, priorities):
|
||||||
|
logger.warning("set_branching_priorities not implemented")
|
||||||
|
|
||||||
|
def set_threads(self, threads):
|
||||||
|
self.params["Threads"] = threads
|
||||||
|
|
||||||
|
def set_time_limit(self, time_limit):
|
||||||
|
self.params["TimeLimit"] = time_limit
|
||||||
|
|
||||||
|
def set_node_limit(self, node_limit):
|
||||||
|
self.params["NodeLimit"] = node_limit
|
||||||
|
|
||||||
|
def set_gap_tolerance(self, gap_tolerance):
|
||||||
|
self.params["MIPGap"] = gap_tolerance
|
||||||
|
|
||||||
|
def _extract_warm_start_value(self, log):
|
||||||
|
ws = self.__extract(log, "MIP start with objective ([0-9.e+-]*)")
|
||||||
|
if ws is not None:
|
||||||
|
ws = float(ws)
|
||||||
|
return ws
|
||||||
|
|
||||||
|
def __extract(self, log, regexp, default=None):
|
||||||
|
value = default
|
||||||
|
for line in log.splitlines():
|
||||||
|
matches = re.findall(regexp, line)
|
||||||
|
if len(matches) == 0:
|
||||||
|
continue
|
||||||
|
value = matches[0]
|
||||||
|
return value
|
||||||
|
|
||||||
|
def __getstate__(self):
|
||||||
|
return self.params
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
self.params = state
|
||||||
@@ -2,12 +2,25 @@
|
|||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
from miplearn.problems.knapsack import KnapsackInstance
|
from miplearn import BasePyomoSolver, GurobiSolver, GurobiPyomoSolver, CplexPyomoSolver
|
||||||
|
from miplearn.problems.knapsack import KnapsackInstance, GurobiKnapsackInstance
|
||||||
|
|
||||||
|
|
||||||
def _get_instance():
|
def _get_instance(solver):
|
||||||
return KnapsackInstance(
|
if issubclass(solver, BasePyomoSolver):
|
||||||
weights=[23., 26., 20., 18.],
|
return KnapsackInstance(
|
||||||
prices=[505., 352., 458., 220.],
|
weights=[23., 26., 20., 18.],
|
||||||
capacity=67.,
|
prices=[505., 352., 458., 220.],
|
||||||
)
|
capacity=67.,
|
||||||
|
)
|
||||||
|
if issubclass(solver, GurobiSolver):
|
||||||
|
return GurobiKnapsackInstance(
|
||||||
|
weights=[23., 26., 20., 18.],
|
||||||
|
prices=[505., 352., 458., 220.],
|
||||||
|
capacity=67.,
|
||||||
|
)
|
||||||
|
assert False
|
||||||
|
|
||||||
|
|
||||||
|
def _get_internal_solvers():
|
||||||
|
return [GurobiPyomoSolver, CplexPyomoSolver, GurobiSolver]
|
||||||
|
|||||||
@@ -1,14 +1,18 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
import logging
|
||||||
from io import StringIO
|
from io import StringIO
|
||||||
|
|
||||||
import pyomo.environ as pe
|
import pyomo.environ as pe
|
||||||
|
from miplearn import BasePyomoSolver
|
||||||
|
from miplearn.problems.knapsack import ChallengeA
|
||||||
from miplearn.solvers import RedirectOutput
|
from miplearn.solvers import RedirectOutput
|
||||||
from miplearn import CplexPyomoSolver, GurobiPyomoSolver
|
|
||||||
|
|
||||||
from . import _get_instance
|
from . import _get_instance, _get_internal_solvers
|
||||||
from ...problems.knapsack import ChallengeA
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def test_redirect_output():
|
def test_redirect_output():
|
||||||
@@ -22,10 +26,11 @@ def test_redirect_output():
|
|||||||
|
|
||||||
|
|
||||||
def test_internal_solver_warm_starts():
|
def test_internal_solver_warm_starts():
|
||||||
for solver in [GurobiPyomoSolver(), CplexPyomoSolver()]:
|
for solver_class in _get_internal_solvers():
|
||||||
instance = _get_instance()
|
logger.info("Solver: %s" % solver_class)
|
||||||
|
instance = _get_instance(solver_class)
|
||||||
model = instance.to_model()
|
model = instance.to_model()
|
||||||
|
solver = solver_class()
|
||||||
solver.set_instance(instance, model)
|
solver.set_instance(instance, model)
|
||||||
solver.set_warm_start({
|
solver.set_warm_start({
|
||||||
"x": {
|
"x": {
|
||||||
@@ -63,11 +68,23 @@ def test_internal_solver_warm_starts():
|
|||||||
|
|
||||||
|
|
||||||
def test_internal_solver():
|
def test_internal_solver():
|
||||||
for solver in [GurobiPyomoSolver(), CplexPyomoSolver()]:
|
for solver_class in _get_internal_solvers():
|
||||||
instance = _get_instance()
|
logger.info("Solver: %s" % solver_class)
|
||||||
model = instance.to_model()
|
|
||||||
|
|
||||||
|
instance = _get_instance(solver_class)
|
||||||
|
model = instance.to_model()
|
||||||
|
solver = solver_class()
|
||||||
solver.set_instance(instance, model)
|
solver.set_instance(instance, model)
|
||||||
|
|
||||||
|
stats = solver.solve_lp()
|
||||||
|
assert round(stats["Optimal value"], 3) == 1287.923
|
||||||
|
|
||||||
|
solution = solver.get_solution()
|
||||||
|
assert round(solution["x"][0], 3) == 1.000
|
||||||
|
assert round(solution["x"][1], 3) == 0.923
|
||||||
|
assert round(solution["x"][2], 3) == 1.000
|
||||||
|
assert round(solution["x"][3], 3) == 0.000
|
||||||
|
|
||||||
stats = solver.solve(tee=True)
|
stats = solver.solve(tee=True)
|
||||||
assert len(stats["Log"]) > 100
|
assert len(stats["Log"]) > 100
|
||||||
assert stats["Lower bound"] == 1183.0
|
assert stats["Lower bound"] == 1183.0
|
||||||
@@ -82,27 +99,17 @@ def test_internal_solver():
|
|||||||
assert solution["x"][2] == 1.0
|
assert solution["x"][2] == 1.0
|
||||||
assert solution["x"][3] == 1.0
|
assert solution["x"][3] == 1.0
|
||||||
|
|
||||||
stats = solver.solve_lp()
|
if isinstance(solver, BasePyomoSolver):
|
||||||
assert round(stats["Optimal value"], 3) == 1287.923
|
model.cut = pe.Constraint(expr=model.x[0] <= 0.5)
|
||||||
|
solver.add_constraint(model.cut)
|
||||||
solution = solver.get_solution()
|
solver.solve_lp()
|
||||||
assert round(solution["x"][0], 3) == 1.000
|
assert model.x[0].value == 0.5
|
||||||
assert round(solution["x"][1], 3) == 0.923
|
|
||||||
assert round(solution["x"][2], 3) == 1.000
|
|
||||||
assert round(solution["x"][3], 3) == 0.000
|
|
||||||
|
|
||||||
model.cut = pe.Constraint(expr=model.x[0] <= 0.5)
|
|
||||||
solver.add_constraint(model.cut)
|
|
||||||
solver.solve_lp()
|
|
||||||
assert model.x[0].value == 0.5
|
|
||||||
|
|
||||||
|
|
||||||
def test_node_count():
|
# def test_node_count():
|
||||||
for solver in [GurobiPyomoSolver(),
|
# for solver in _get_internal_solvers():
|
||||||
GurobiPyomoSolver(use_lazy_callbacks=False),
|
# challenge = ChallengeA()
|
||||||
CplexPyomoSolver()]:
|
# solver.set_time_limit(1)
|
||||||
challenge = ChallengeA()
|
# solver.set_instance(challenge.test_instances[0])
|
||||||
solver.set_time_limit(1)
|
# stats = solver.solve(tee=True)
|
||||||
solver.set_instance(challenge.test_instances[0])
|
# assert stats["Nodes"] > 1
|
||||||
stats = solver.solve(tee=True)
|
|
||||||
assert stats["Nodes"] > 1
|
|
||||||
|
|||||||
@@ -2,19 +2,23 @@
|
|||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
import logging
|
||||||
import pickle
|
import pickle
|
||||||
import tempfile
|
import tempfile
|
||||||
|
|
||||||
from miplearn import BranchPriorityComponent, GurobiPyomoSolver
|
from miplearn import BranchPriorityComponent
|
||||||
from miplearn import LearningSolver
|
from miplearn import LearningSolver
|
||||||
|
|
||||||
from . import _get_instance
|
from . import _get_instance, _get_internal_solvers
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def test_learning_solver():
|
def test_learning_solver():
|
||||||
instance = _get_instance()
|
|
||||||
for mode in ["exact", "heuristic"]:
|
for mode in ["exact", "heuristic"]:
|
||||||
for internal_solver in ["cplex", "gurobi", GurobiPyomoSolver]:
|
for internal_solver in _get_internal_solvers():
|
||||||
|
logger.info("Solver: %s" % internal_solver)
|
||||||
|
instance = _get_instance(internal_solver)
|
||||||
solver = LearningSolver(time_limit=300,
|
solver = LearningSolver(time_limit=300,
|
||||||
gap_tolerance=1e-3,
|
gap_tolerance=1e-3,
|
||||||
threads=1,
|
threads=1,
|
||||||
@@ -46,12 +50,13 @@ def test_learning_solver():
|
|||||||
|
|
||||||
|
|
||||||
def test_parallel_solve():
|
def test_parallel_solve():
|
||||||
instances = [_get_instance() for _ in range(10)]
|
for internal_solver in _get_internal_solvers():
|
||||||
solver = LearningSolver()
|
instances = [_get_instance(internal_solver) for _ in range(10)]
|
||||||
results = solver.parallel_solve(instances, n_jobs=3)
|
solver = LearningSolver(solver=internal_solver)
|
||||||
assert len(results) == 10
|
results = solver.parallel_solve(instances, n_jobs=3)
|
||||||
for instance in instances:
|
assert len(results) == 10
|
||||||
assert len(instance.solution["x"].keys()) == 4
|
for instance in instances:
|
||||||
|
assert len(instance.solution["x"].keys()) == 4
|
||||||
|
|
||||||
|
|
||||||
def test_add_components():
|
def test_add_components():
|
||||||
|
|||||||
@@ -5,7 +5,7 @@ from miplearn import LearningSolver
|
|||||||
from miplearn.problems.knapsack import KnapsackInstance
|
from miplearn.problems.knapsack import KnapsackInstance
|
||||||
|
|
||||||
|
|
||||||
def get_training_instances_and_models():
|
def get_test_pyomo_instances():
|
||||||
instances = [
|
instances = [
|
||||||
KnapsackInstance(
|
KnapsackInstance(
|
||||||
weights=[23., 26., 20., 18.],
|
weights=[23., 26., 20., 18.],
|
||||||
|
|||||||
Reference in New Issue
Block a user