Implement component.fit, component.fit_xy

This commit is contained in:
2021-03-30 21:18:40 -05:00
parent 205a972937
commit 1224613b1a
7 changed files with 152 additions and 206 deletions

View File

@@ -2,9 +2,10 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from abc import ABC, abstractmethod
import numpy as np
from typing import Any, List, Union, TYPE_CHECKING, Tuple, Dict
from miplearn.extractors import InstanceIterator
from miplearn.instance import Instance
from miplearn.types import LearningSolveStats, TrainingSample
@@ -13,7 +14,7 @@ if TYPE_CHECKING:
# noinspection PyMethodMayBeStatic
class Component(ABC):
class Component:
"""
A Component is an object which adds functionality to a LearningSolver.
@@ -130,12 +131,6 @@ class Component(ABC):
"""
return
def fit(
self,
training_instances: Union[List[str], List[Instance]],
) -> None:
return
@staticmethod
def xy_sample(
instance: Any,
@@ -147,6 +142,40 @@ class Component(ABC):
"""
return {}, {}
def xy_instances(
self,
instances: Union[List[str], List[Instance]],
) -> Tuple[Dict, Dict]:
x_combined: Dict = {}
y_combined: Dict = {}
for instance in InstanceIterator(instances):
for sample in instance.training_data:
x_sample, y_sample = self.xy_sample(instance, sample)
for cat in x_sample.keys():
if cat not in x_combined:
x_combined[cat] = []
y_combined[cat] = []
x_combined[cat] += x_sample[cat]
y_combined[cat] += y_sample[cat]
return x_combined, y_combined
def fit(
self,
training_instances: Union[List[str], List[Instance]],
) -> None:
x, y = self.xy_instances(training_instances)
for cat in x.keys():
x[cat] = np.array(x[cat])
y[cat] = np.array(y[cat])
self.fit_xy(x, y)
def fit_xy(
self,
x: Dict[str, np.ndarray],
y: Dict[str, np.ndarray],
) -> None:
return
def iteration_cb(
self,
solver: "LearningSolver",

View File

@@ -105,19 +105,11 @@ class PrimalSolutionComponent(Component):
) -> Dict[Hashable, np.ndarray]:
return self._build_x_y_dict(instances, self._extract_variable_features)
def y(
def fit_xy(
self,
instances: Union[List[str], List[Instance]],
) -> Dict[Hashable, np.ndarray]:
return self._build_x_y_dict(instances, self._extract_variable_labels)
def fit(
self,
training_instances: Union[List[str], List[Instance]],
n_jobs: int = 1,
x: Dict[str, np.ndarray],
y: Dict[str, np.ndarray],
) -> None:
x = self.x(training_instances)
y = self.y(training_instances)
for category in x.keys():
clf = self.classifier_factory()
thr = self.threshold_factory()
@@ -322,8 +314,11 @@ class PrimalSolutionComponent(Component):
x[category] = []
y[category] = []
features: Any = instance.get_variable_features(var, idx)
assert isinstance(features, list)
if "LP solution" in sample and sample["LP solution"] is not None:
features += [sample["LP solution"][var][idx]]
lp_value = sample["LP solution"][var][idx]
if lp_value is not None:
features += [sample["LP solution"][var][idx]]
x[category] += [features]
y[category] += [[opt_value < 0.5, opt_value >= 0.5]]
return x, y