mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-06 09:28:51 -06:00
Add first model feature (constraint RHS)
This commit is contained in:
26
miplearn/features.py
Normal file
26
miplearn/features.py
Normal file
@@ -0,0 +1,26 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
from typing import TYPE_CHECKING
|
||||||
|
|
||||||
|
from miplearn.types import ModelFeatures
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from miplearn import InternalSolver
|
||||||
|
|
||||||
|
|
||||||
|
class ModelFeaturesExtractor:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
internal_solver: "InternalSolver",
|
||||||
|
) -> None:
|
||||||
|
self.internal_solver = internal_solver
|
||||||
|
|
||||||
|
def extract(self) -> ModelFeatures:
|
||||||
|
rhs = {}
|
||||||
|
for cid in self.internal_solver.get_constraint_ids():
|
||||||
|
rhs[cid] = self.internal_solver.get_constraint_rhs(cid)
|
||||||
|
return {
|
||||||
|
"ConstraintRHS": rhs,
|
||||||
|
}
|
||||||
@@ -9,7 +9,7 @@ from typing import Any, List, Optional, Hashable
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from miplearn.types import TrainingSample, VarIndex
|
from miplearn.types import TrainingSample, VarIndex, ModelFeatures
|
||||||
|
|
||||||
|
|
||||||
class Instance(ABC):
|
class Instance(ABC):
|
||||||
@@ -24,8 +24,9 @@ class Instance(ABC):
|
|||||||
features, which can be provided as inputs to machine learning models.
|
features, which can be provided as inputs to machine learning models.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self) -> None:
|
||||||
self.training_data: List[TrainingSample] = []
|
self.training_data: List[TrainingSample] = []
|
||||||
|
self.model_features: ModelFeatures = {}
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def to_model(self) -> Any:
|
def to_model(self) -> Any:
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
from typing import List
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pyomo.environ as pe
|
import pyomo.environ as pe
|
||||||
@@ -24,7 +25,6 @@ class ChallengeA:
|
|||||||
n_training_instances=500,
|
n_training_instances=500,
|
||||||
n_test_instances=50,
|
n_test_instances=50,
|
||||||
):
|
):
|
||||||
|
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
self.gen = MultiKnapsackGenerator(
|
self.gen = MultiKnapsackGenerator(
|
||||||
n=randint(low=250, high=251),
|
n=randint(low=250, high=251),
|
||||||
@@ -241,7 +241,12 @@ class KnapsackInstance(Instance):
|
|||||||
Simpler (one-dimensional) Knapsack Problem, used for testing.
|
Simpler (one-dimensional) Knapsack Problem, used for testing.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, weights, prices, capacity):
|
def __init__(
|
||||||
|
self,
|
||||||
|
weights: List[float],
|
||||||
|
prices: List[float],
|
||||||
|
capacity: float,
|
||||||
|
) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.weights = weights
|
self.weights = weights
|
||||||
self.prices = prices
|
self.prices = prices
|
||||||
@@ -282,7 +287,12 @@ class GurobiKnapsackInstance(KnapsackInstance):
|
|||||||
instead of Pyomo, used for testing.
|
instead of Pyomo, used for testing.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, weights, prices, capacity):
|
def __init__(
|
||||||
|
self,
|
||||||
|
weights: List[float],
|
||||||
|
prices: List[float],
|
||||||
|
capacity: float,
|
||||||
|
) -> None:
|
||||||
super().__init__(weights, prices, capacity)
|
super().__init__(weights, prices, capacity)
|
||||||
|
|
||||||
def to_model(self):
|
def to_model(self):
|
||||||
|
|||||||
@@ -335,6 +335,10 @@ class GurobiSolver(InternalSolver):
|
|||||||
self.model.update()
|
self.model.update()
|
||||||
return [c.ConstrName for c in self.model.getConstrs()]
|
return [c.ConstrName for c in self.model.getConstrs()]
|
||||||
|
|
||||||
|
def get_constraint_rhs(self, cid: str) -> float:
|
||||||
|
assert self.model is not None
|
||||||
|
return self.model.getConstrByName(cid).rhs
|
||||||
|
|
||||||
def extract_constraint(self, cid):
|
def extract_constraint(self, cid):
|
||||||
self._raise_if_callback()
|
self._raise_if_callback()
|
||||||
constr = self.model.getConstrByName(cid)
|
constr = self.model.getConstrByName(cid)
|
||||||
|
|||||||
@@ -155,6 +155,13 @@ class InternalSolver(ABC):
|
|||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def get_constraint_rhs(self, cid: str) -> float:
|
||||||
|
"""
|
||||||
|
Returns the right-hand side of a given constraint.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def add_constraint(self, cobj: Constraint) -> None:
|
def add_constraint(self, cobj: Constraint) -> None:
|
||||||
"""
|
"""
|
||||||
|
|||||||
@@ -16,11 +16,12 @@ from miplearn.components.cuts import UserCutsComponent
|
|||||||
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
||||||
from miplearn.components.objective import ObjectiveValueComponent
|
from miplearn.components.objective import ObjectiveValueComponent
|
||||||
from miplearn.components.primal import PrimalSolutionComponent
|
from miplearn.components.primal import PrimalSolutionComponent
|
||||||
|
from miplearn.features import ModelFeaturesExtractor
|
||||||
from miplearn.instance import Instance
|
from miplearn.instance import Instance
|
||||||
from miplearn.solvers import _RedirectOutput
|
from miplearn.solvers import _RedirectOutput
|
||||||
from miplearn.solvers.internal import InternalSolver
|
from miplearn.solvers.internal import InternalSolver
|
||||||
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
||||||
from miplearn.types import MIPSolveStats, TrainingSample, LearningSolveStats
|
from miplearn.types import TrainingSample, LearningSolveStats
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@@ -164,6 +165,10 @@ class LearningSolver:
|
|||||||
assert isinstance(self.internal_solver, InternalSolver)
|
assert isinstance(self.internal_solver, InternalSolver)
|
||||||
self.internal_solver.set_instance(instance, model)
|
self.internal_solver.set_instance(instance, model)
|
||||||
|
|
||||||
|
# Extract model features
|
||||||
|
extractor = ModelFeaturesExtractor(self.internal_solver)
|
||||||
|
instance.model_features = extractor.extract()
|
||||||
|
|
||||||
# Solve linear relaxation
|
# Solve linear relaxation
|
||||||
if self.solve_lp_first:
|
if self.solve_lp_first:
|
||||||
logger.info("Solving LP relaxation...")
|
logger.info("Solving LP relaxation...")
|
||||||
|
|||||||
@@ -212,7 +212,11 @@ class BasePyomoSolver(InternalSolver):
|
|||||||
assert self.model is not None
|
assert self.model is not None
|
||||||
self._cname_to_constr = {}
|
self._cname_to_constr = {}
|
||||||
for constr in self.model.component_objects(Constraint):
|
for constr in self.model.component_objects(Constraint):
|
||||||
self._cname_to_constr[constr.name] = constr
|
if isinstance(constr, pe.ConstraintList):
|
||||||
|
for idx in constr:
|
||||||
|
self._cname_to_constr[f"{constr.name}[{idx}]"] = constr[idx]
|
||||||
|
else:
|
||||||
|
self._cname_to_constr[constr.name] = constr
|
||||||
|
|
||||||
def fix(self, solution):
|
def fix(self, solution):
|
||||||
count_total, count_fixed = 0, 0
|
count_total, count_fixed = 0, 0
|
||||||
@@ -302,6 +306,13 @@ class BasePyomoSolver(InternalSolver):
|
|||||||
else:
|
else:
|
||||||
return "="
|
return "="
|
||||||
|
|
||||||
|
def get_constraint_rhs(self, cid: str) -> float:
|
||||||
|
cobj = self._cname_to_constr[cid]
|
||||||
|
if cobj.has_ub:
|
||||||
|
return cobj.upper()
|
||||||
|
else:
|
||||||
|
return cobj.lower()
|
||||||
|
|
||||||
def set_constraint_sense(self, cid: str, sense: str) -> None:
|
def set_constraint_sense(self, cid: str, sense: str) -> None:
|
||||||
raise Exception("Not implemented")
|
raise Exception("Not implemented")
|
||||||
|
|
||||||
|
|||||||
@@ -71,6 +71,14 @@ LearningSolveStats = TypedDict(
|
|||||||
total=False,
|
total=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
ModelFeatures = TypedDict(
|
||||||
|
"ModelFeatures",
|
||||||
|
{
|
||||||
|
"ConstraintRHS": Dict[str, float],
|
||||||
|
},
|
||||||
|
total=False,
|
||||||
|
)
|
||||||
|
|
||||||
IterationCallback = Callable[[], bool]
|
IterationCallback = Callable[[], bool]
|
||||||
|
|
||||||
LazyCallback = Callable[[Any, Any], None]
|
LazyCallback = Callable[[Any, Any], None]
|
||||||
|
|||||||
@@ -1,26 +1,3 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
from miplearn.problems.knapsack import KnapsackInstance
|
|
||||||
from miplearn.solvers.learning import LearningSolver
|
|
||||||
|
|
||||||
|
|
||||||
def get_test_pyomo_instances():
|
|
||||||
instances = [
|
|
||||||
KnapsackInstance(
|
|
||||||
weights=[23.0, 26.0, 20.0, 18.0],
|
|
||||||
prices=[505.0, 352.0, 458.0, 220.0],
|
|
||||||
capacity=67.0,
|
|
||||||
),
|
|
||||||
KnapsackInstance(
|
|
||||||
weights=[25.0, 30.0, 22.0, 18.0],
|
|
||||||
prices=[500.0, 365.0, 420.0, 150.0],
|
|
||||||
capacity=70.0,
|
|
||||||
),
|
|
||||||
]
|
|
||||||
models = [instance.to_model() for instance in instances]
|
|
||||||
solver = LearningSolver()
|
|
||||||
for i in range(len(instances)):
|
|
||||||
solver.solve(instances[i], models[i])
|
|
||||||
return instances, models
|
|
||||||
|
|||||||
@@ -12,7 +12,7 @@ from miplearn.classifiers import Classifier
|
|||||||
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
|
||||||
from miplearn.solvers.internal import InternalSolver
|
from miplearn.solvers.internal import InternalSolver
|
||||||
from miplearn.solvers.learning import LearningSolver
|
from miplearn.solvers.learning import LearningSolver
|
||||||
from .. import get_test_pyomo_instances
|
from tests.fixtures.knapsack import get_test_pyomo_instances
|
||||||
|
|
||||||
E = 0.1
|
E = 0.1
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
from typing import cast
|
from typing import cast
|
||||||
from unittest.mock import Mock
|
from unittest.mock import Mock
|
||||||
|
|
||||||
@@ -10,7 +11,7 @@ from numpy.testing import assert_array_equal
|
|||||||
from miplearn.instance import Instance
|
from miplearn.instance import Instance
|
||||||
from miplearn.classifiers import Regressor
|
from miplearn.classifiers import Regressor
|
||||||
from miplearn.components.objective import ObjectiveValueComponent
|
from miplearn.components.objective import ObjectiveValueComponent
|
||||||
from .. import get_test_pyomo_instances
|
from tests.fixtures.knapsack import get_test_pyomo_instances
|
||||||
|
|
||||||
|
|
||||||
def test_x_y_predict() -> None:
|
def test_x_y_predict() -> None:
|
||||||
|
|||||||
@@ -11,7 +11,6 @@ from miplearn import Classifier
|
|||||||
from miplearn.classifiers.threshold import Threshold, MinPrecisionThreshold
|
from miplearn.classifiers.threshold import Threshold, MinPrecisionThreshold
|
||||||
from miplearn.components.primal import PrimalSolutionComponent
|
from miplearn.components.primal import PrimalSolutionComponent
|
||||||
from miplearn.instance import Instance
|
from miplearn.instance import Instance
|
||||||
from tests import get_test_pyomo_instances
|
|
||||||
|
|
||||||
|
|
||||||
def test_x_y_fit() -> None:
|
def test_x_y_fit() -> None:
|
||||||
|
|||||||
45
tests/fixtures/knapsack.py
vendored
Normal file
45
tests/fixtures/knapsack.py
vendored
Normal file
@@ -0,0 +1,45 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
|
from miplearn import BasePyomoSolver, GurobiSolver, InternalSolver, Instance
|
||||||
|
from miplearn.problems.knapsack import KnapsackInstance, GurobiKnapsackInstance
|
||||||
|
from miplearn.solvers.learning import LearningSolver
|
||||||
|
from tests.solvers import _is_subclass_or_instance
|
||||||
|
|
||||||
|
|
||||||
|
def get_test_pyomo_instances():
|
||||||
|
instances = [
|
||||||
|
KnapsackInstance(
|
||||||
|
weights=[23.0, 26.0, 20.0, 18.0],
|
||||||
|
prices=[505.0, 352.0, 458.0, 220.0],
|
||||||
|
capacity=67.0,
|
||||||
|
),
|
||||||
|
KnapsackInstance(
|
||||||
|
weights=[25.0, 30.0, 22.0, 18.0],
|
||||||
|
prices=[500.0, 365.0, 420.0, 150.0],
|
||||||
|
capacity=70.0,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
models = [instance.to_model() for instance in instances]
|
||||||
|
solver = LearningSolver()
|
||||||
|
for i in range(len(instances)):
|
||||||
|
solver.solve(instances[i], models[i])
|
||||||
|
return instances, models
|
||||||
|
|
||||||
|
|
||||||
|
def get_knapsack_instance(solver: InternalSolver) -> Instance:
|
||||||
|
if _is_subclass_or_instance(solver, BasePyomoSolver):
|
||||||
|
return KnapsackInstance(
|
||||||
|
weights=[23.0, 26.0, 20.0, 18.0],
|
||||||
|
prices=[505.0, 352.0, 458.0, 220.0],
|
||||||
|
capacity=67.0,
|
||||||
|
)
|
||||||
|
elif _is_subclass_or_instance(solver, GurobiSolver):
|
||||||
|
return GurobiKnapsackInstance(
|
||||||
|
weights=[23.0, 26.0, 20.0, 18.0],
|
||||||
|
prices=[505.0, 352.0, 458.0, 220.0],
|
||||||
|
capacity=67.0,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert False
|
||||||
@@ -3,7 +3,7 @@
|
|||||||
# Released under the modified BSD license. See COPYING.md for more details.
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
|
||||||
from inspect import isclass
|
from inspect import isclass
|
||||||
from typing import List, Callable
|
from typing import List, Callable, Any
|
||||||
|
|
||||||
from miplearn.problems.knapsack import KnapsackInstance, GurobiKnapsackInstance
|
from miplearn.problems.knapsack import KnapsackInstance, GurobiKnapsackInstance
|
||||||
from miplearn.solvers.gurobi import GurobiSolver
|
from miplearn.solvers.gurobi import GurobiSolver
|
||||||
@@ -13,7 +13,7 @@ from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
|||||||
from miplearn.solvers.pyomo.xpress import XpressPyomoSolver
|
from miplearn.solvers.pyomo.xpress import XpressPyomoSolver
|
||||||
|
|
||||||
|
|
||||||
def _is_subclass_or_instance(obj, parent_class):
|
def _is_subclass_or_instance(obj: Any, parent_class: Any) -> bool:
|
||||||
return isinstance(obj, parent_class) or (
|
return isinstance(obj, parent_class) or (
|
||||||
isclass(obj) and issubclass(obj, parent_class)
|
isclass(obj) and issubclass(obj, parent_class)
|
||||||
)
|
)
|
||||||
@@ -35,5 +35,5 @@ def _get_knapsack_instance(solver):
|
|||||||
assert False
|
assert False
|
||||||
|
|
||||||
|
|
||||||
def _get_internal_solvers() -> List[Callable[[], InternalSolver]]:
|
def get_internal_solvers() -> List[Callable[[], InternalSolver]]:
|
||||||
return [GurobiPyomoSolver, GurobiSolver, XpressPyomoSolver]
|
return [GurobiPyomoSolver, GurobiSolver, XpressPyomoSolver]
|
||||||
|
|||||||
@@ -13,7 +13,7 @@ from miplearn.solvers.gurobi import GurobiSolver
|
|||||||
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
from miplearn.solvers.pyomo.base import BasePyomoSolver
|
||||||
from . import (
|
from . import (
|
||||||
_get_knapsack_instance,
|
_get_knapsack_instance,
|
||||||
_get_internal_solvers,
|
get_internal_solvers,
|
||||||
)
|
)
|
||||||
from ..fixtures.infeasible import get_infeasible_instance
|
from ..fixtures.infeasible import get_infeasible_instance
|
||||||
|
|
||||||
@@ -32,7 +32,7 @@ def test_redirect_output():
|
|||||||
|
|
||||||
|
|
||||||
def test_internal_solver_warm_starts():
|
def test_internal_solver_warm_starts():
|
||||||
for solver_class in _get_internal_solvers():
|
for solver_class in get_internal_solvers():
|
||||||
logger.info("Solver: %s" % solver_class)
|
logger.info("Solver: %s" % solver_class)
|
||||||
instance = _get_knapsack_instance(solver_class)
|
instance = _get_knapsack_instance(solver_class)
|
||||||
model = instance.to_model()
|
model = instance.to_model()
|
||||||
@@ -83,7 +83,7 @@ def test_internal_solver_warm_starts():
|
|||||||
|
|
||||||
|
|
||||||
def test_internal_solver():
|
def test_internal_solver():
|
||||||
for solver_class in _get_internal_solvers():
|
for solver_class in get_internal_solvers():
|
||||||
logger.info("Solver: %s" % solver_class)
|
logger.info("Solver: %s" % solver_class)
|
||||||
|
|
||||||
instance = _get_knapsack_instance(solver_class)
|
instance = _get_knapsack_instance(solver_class)
|
||||||
@@ -175,7 +175,7 @@ def test_internal_solver():
|
|||||||
|
|
||||||
|
|
||||||
def test_relax():
|
def test_relax():
|
||||||
for solver_class in _get_internal_solvers():
|
for solver_class in get_internal_solvers():
|
||||||
instance = _get_knapsack_instance(solver_class)
|
instance = _get_knapsack_instance(solver_class)
|
||||||
solver = solver_class()
|
solver = solver_class()
|
||||||
solver.set_instance(instance)
|
solver.set_instance(instance)
|
||||||
@@ -185,7 +185,7 @@ def test_relax():
|
|||||||
|
|
||||||
|
|
||||||
def test_infeasible_instance():
|
def test_infeasible_instance():
|
||||||
for solver_class in _get_internal_solvers():
|
for solver_class in get_internal_solvers():
|
||||||
instance = get_infeasible_instance(solver_class)
|
instance = get_infeasible_instance(solver_class)
|
||||||
solver = solver_class()
|
solver = solver_class()
|
||||||
solver.set_instance(instance)
|
solver.set_instance(instance)
|
||||||
@@ -203,7 +203,7 @@ def test_infeasible_instance():
|
|||||||
|
|
||||||
|
|
||||||
def test_iteration_cb():
|
def test_iteration_cb():
|
||||||
for solver_class in _get_internal_solvers():
|
for solver_class in get_internal_solvers():
|
||||||
logger.info("Solver: %s" % solver_class)
|
logger.info("Solver: %s" % solver_class)
|
||||||
instance = _get_knapsack_instance(solver_class)
|
instance = _get_knapsack_instance(solver_class)
|
||||||
solver = solver_class()
|
solver = solver_class()
|
||||||
|
|||||||
@@ -10,14 +10,14 @@ import os
|
|||||||
|
|
||||||
from miplearn.solvers.gurobi import GurobiSolver
|
from miplearn.solvers.gurobi import GurobiSolver
|
||||||
from miplearn.solvers.learning import LearningSolver
|
from miplearn.solvers.learning import LearningSolver
|
||||||
from . import _get_knapsack_instance, _get_internal_solvers
|
from . import _get_knapsack_instance, get_internal_solvers
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def test_learning_solver():
|
def test_learning_solver():
|
||||||
for mode in ["exact", "heuristic"]:
|
for mode in ["exact", "heuristic"]:
|
||||||
for internal_solver in _get_internal_solvers():
|
for internal_solver in get_internal_solvers():
|
||||||
logger.info("Solver: %s" % internal_solver)
|
logger.info("Solver: %s" % internal_solver)
|
||||||
instance = _get_knapsack_instance(internal_solver)
|
instance = _get_knapsack_instance(internal_solver)
|
||||||
solver = LearningSolver(
|
solver = LearningSolver(
|
||||||
@@ -26,6 +26,9 @@ def test_learning_solver():
|
|||||||
)
|
)
|
||||||
|
|
||||||
solver.solve(instance)
|
solver.solve(instance)
|
||||||
|
|
||||||
|
assert hasattr(instance, "model_features")
|
||||||
|
|
||||||
data = instance.training_data[0]
|
data = instance.training_data[0]
|
||||||
assert data["Solution"]["x"][0] == 1.0
|
assert data["Solution"]["x"][0] == 1.0
|
||||||
assert data["Solution"]["x"][1] == 0.0
|
assert data["Solution"]["x"][1] == 0.0
|
||||||
@@ -49,7 +52,7 @@ def test_learning_solver():
|
|||||||
|
|
||||||
|
|
||||||
def test_solve_without_lp():
|
def test_solve_without_lp():
|
||||||
for internal_solver in _get_internal_solvers():
|
for internal_solver in get_internal_solvers():
|
||||||
logger.info("Solver: %s" % internal_solver)
|
logger.info("Solver: %s" % internal_solver)
|
||||||
instance = _get_knapsack_instance(internal_solver)
|
instance = _get_knapsack_instance(internal_solver)
|
||||||
solver = LearningSolver(
|
solver = LearningSolver(
|
||||||
@@ -62,7 +65,7 @@ def test_solve_without_lp():
|
|||||||
|
|
||||||
|
|
||||||
def test_parallel_solve():
|
def test_parallel_solve():
|
||||||
for internal_solver in _get_internal_solvers():
|
for internal_solver in get_internal_solvers():
|
||||||
instances = [_get_knapsack_instance(internal_solver) for _ in range(10)]
|
instances = [_get_knapsack_instance(internal_solver) for _ in range(10)]
|
||||||
solver = LearningSolver(solver=internal_solver)
|
solver = LearningSolver(solver=internal_solver)
|
||||||
results = solver.parallel_solve(instances, n_jobs=3)
|
results = solver.parallel_solve(instances, n_jobs=3)
|
||||||
@@ -73,7 +76,7 @@ def test_parallel_solve():
|
|||||||
|
|
||||||
|
|
||||||
def test_solve_fit_from_disk():
|
def test_solve_fit_from_disk():
|
||||||
for internal_solver in _get_internal_solvers():
|
for internal_solver in get_internal_solvers():
|
||||||
# Create instances and pickle them
|
# Create instances and pickle them
|
||||||
filenames = []
|
filenames = []
|
||||||
for k in range(3):
|
for k in range(3):
|
||||||
|
|||||||
23
tests/test_features.py
Normal file
23
tests/test_features.py
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
||||||
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||||
|
# Released under the modified BSD license. See COPYING.md for more details.
|
||||||
|
from miplearn.features import ModelFeaturesExtractor
|
||||||
|
from tests.fixtures.knapsack import get_knapsack_instance
|
||||||
|
from tests.solvers import get_internal_solvers
|
||||||
|
|
||||||
|
|
||||||
|
def test_knapsack() -> None:
|
||||||
|
for solver_factory in get_internal_solvers():
|
||||||
|
# Initialize model, instance and internal solver
|
||||||
|
solver = solver_factory()
|
||||||
|
instance = get_knapsack_instance(solver)
|
||||||
|
model = instance.to_model()
|
||||||
|
solver.set_instance(instance, model)
|
||||||
|
|
||||||
|
# Extract all model features
|
||||||
|
extractor = ModelFeaturesExtractor(solver)
|
||||||
|
features = extractor.extract()
|
||||||
|
|
||||||
|
# Test constraint features
|
||||||
|
print(solver, features)
|
||||||
|
assert features["ConstraintRHS"]["eq_capacity"] == 67.0
|
||||||
Reference in New Issue
Block a user