mirror of
https://github.com/ANL-CEEESA/MIPLearn.git
synced 2025-12-09 02:48:52 -06:00
Implement MaxCutPerturber
This commit is contained in:
@@ -25,24 +25,18 @@ class MaxCutData:
|
||||
|
||||
|
||||
class MaxCutGenerator:
|
||||
"""
|
||||
Random instance generator for the Maximum Cut Problem.
|
||||
"""Random instance generator for the Maximum Cut Problem.
|
||||
|
||||
The generator operates in two modes. When `fix_graph=True`, a single random Erdős-Rényi graph $G_{n,
|
||||
p}$ is generated during initialization, with parameters $n$ and $p$ drawn from their respective probability
|
||||
distributions, and each edge is assigned a random weight drawn from the set {-1, 1}, with equal probability. To
|
||||
generate each instance variation, the generator randomly flips the sign of each edge weight with probability
|
||||
`w_jitter`. The graph remains the same across all variations.
|
||||
|
||||
When `fix_graph=False`, a new random graph is generated for each instance, with random {-1,1} edge weights.
|
||||
Generates instances by creating a new random Erdős-Rényi graph $G_{n,p}$ for each
|
||||
instance, where $n$ and $p$ are sampled from user-provided probability distributions.
|
||||
For each instance, the generator assigns random edge weights drawn from the set {-1, 1}
|
||||
with equal probability.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n: rv_frozen,
|
||||
p: rv_frozen,
|
||||
w_jitter: float = 0.0,
|
||||
fix_graph: bool = False,
|
||||
):
|
||||
"""
|
||||
Initialize the problem generator.
|
||||
@@ -53,35 +47,16 @@ class MaxCutGenerator:
|
||||
Probability distribution for the number of nodes.
|
||||
p: rv_continuous
|
||||
Probability distribution for the graph density.
|
||||
w_jitter: float
|
||||
Probability that each edge weight flips from -1 to 1. Only applicable if fix_graph is True.
|
||||
fix_graph: bool
|
||||
Controls graph generation for instances. If false, a new random graph is
|
||||
generated for each instance. If true, the same graph is reused across instances.
|
||||
"""
|
||||
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
|
||||
assert isinstance(p, rv_frozen), "p should be a SciPy probability distribution"
|
||||
self.n = n
|
||||
self.p = p
|
||||
self.w_jitter = w_jitter
|
||||
self.fix_graph = fix_graph
|
||||
self.graph = None
|
||||
self.weights = None
|
||||
if fix_graph:
|
||||
self.graph = self._generate_graph()
|
||||
self.weights = self._generate_weights(self.graph)
|
||||
|
||||
def generate(self, n_samples: int) -> List[MaxCutData]:
|
||||
def _sample() -> MaxCutData:
|
||||
if self.graph is not None:
|
||||
graph = self.graph
|
||||
weights = self.weights
|
||||
jitter = self._generate_jitter(graph)
|
||||
weights = weights * jitter
|
||||
else:
|
||||
graph = self._generate_graph()
|
||||
weights = self._generate_weights(graph)
|
||||
assert weights is not None
|
||||
graph = self._generate_graph()
|
||||
weights = self._generate_weights(graph)
|
||||
return MaxCutData(graph, weights)
|
||||
|
||||
return [_sample() for _ in range(n_samples)]
|
||||
@@ -94,6 +69,41 @@ class MaxCutGenerator:
|
||||
m = graph.number_of_edges()
|
||||
return np.random.randint(2, size=(m,)) * 2 - 1
|
||||
|
||||
|
||||
class MaxCutPerturber:
|
||||
"""Perturbation generator for existing Maximum Cut instances.
|
||||
|
||||
Takes an existing MaxCutData instance and generates new instances by randomly
|
||||
flipping the sign of each edge weight with a given probability while keeping
|
||||
the graph structure fixed.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
w_jitter: float = 0.05,
|
||||
):
|
||||
"""Initialize the perturbation generator.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
w_jitter: float
|
||||
Probability that each edge weight flips sign (from -1 to 1 or vice versa).
|
||||
"""
|
||||
assert 0.0 <= w_jitter <= 1.0, "w_jitter should be between 0.0 and 1.0"
|
||||
self.w_jitter = w_jitter
|
||||
|
||||
def perturb(
|
||||
self,
|
||||
instance: MaxCutData,
|
||||
n_samples: int,
|
||||
) -> List[MaxCutData]:
|
||||
def _sample() -> MaxCutData:
|
||||
jitter = self._generate_jitter(instance.graph)
|
||||
weights = instance.weights * jitter
|
||||
return MaxCutData(instance.graph, weights)
|
||||
|
||||
return [_sample() for _ in range(n_samples)]
|
||||
|
||||
def _generate_jitter(self, graph: Graph) -> np.ndarray:
|
||||
m = graph.number_of_edges()
|
||||
return (np.random.rand(m) >= self.w_jitter).astype(int) * 2 - 1
|
||||
|
||||
Reference in New Issue
Block a user